scholarly journals Reply: “Letter to the Editor Re: Billeaud et al. Nutrients 2018, 10, 690”

Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 406
Author(s):  
Claude Billeaud ◽  
Carole Boué-Vaysse ◽  
Leslie Couëdelo ◽  
Philippe Steenhout ◽  
Jonathan Jaeger ◽  
...  

We thank Bernard and colleagues for their careful reading and interest in our article Effects on Fatty Acid Metabolism of a New Powdered Human Milk Fortifier Containing Medium-Chain Triacylglycerols and Docosahexaenoic Acid in Preterm Infants [...]

Nutrients ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 690 ◽  
Author(s):  
Claude Billeaud ◽  
Carole Boué-Vaysse ◽  
Leslie Couëdelo ◽  
Philippe Steenhout ◽  
Jonathan Jaeger ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 680
Author(s):  
Claude Billeaud ◽  
Carole Boué-Vaysse ◽  
Leslie Couëdelo ◽  
Philippe Steenhout ◽  
Jonathan Jaeger ◽  
...  

The authors wish to make a correction to the published version of their paper [...]


2006 ◽  
Vol 72 (1) ◽  
pp. 536-543 ◽  
Author(s):  
Bo Zhang ◽  
Ross Carlson ◽  
Friedrich Srienc

ABSTRACT Polyhydroxyalkanoates (PHAs) have received considerable interest as renewable-resource-based, biodegradable, and biocompatible plastics with a wide range of potential applications. We have engineered the synthesis of PHA polymers composed of monomers ranging from 4 to 14 carbon atoms in either the cytosol or the peroxisome of Saccharomyces cerevisiae by harnessing intermediates of fatty acid metabolism. Cytosolic PHA production was supported by establishing in the cytosol critical β-oxidation chemistries which are found natively in peroxisomes. This platform was utilized to supply medium-chain (C6 to C14) PHA precursors from both fatty acid degradation and synthesis to a cytosolically expressed medium-chain-length (mcl) polymerase from Pseudomonas oleovorans. Synthesis of short-chain-length PHAs (scl-PHAs) was established in the peroxisome of a wild-type yeast strain by targeting the Ralstonia eutropha scl polymerase to the peroxisome. This strain, harboring a peroxisomally targeted scl-PHA synthase, accumulated PHA up to approximately 7% of its cell dry weight. These results indicate (i) that S. cerevisiae expressing a cytosolic mcl-PHA polymerase or a peroxisomal scl-PHA synthase can use the 3-hydroxyacyl coenzyme A intermediates from fatty acid metabolism to synthesize PHAs and (ii) that fatty acid degradation is also possible in the cytosol as β-oxidation might not be confined only to the peroxisomes. Polymers of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers can be controlled by feeding the appropriate substrates. This ability should permit the rational design and synthesis of polymers with desired material properties.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 103 ◽  
Author(s):  
Wolfgang Bernhard ◽  
Christian F. Poets ◽  
Axel R. Franz

Billeaud and co-authors recently described the effects of a new middle-chain fatty acid and docosahexaenoic acid enriched breast milk fortifier to improve preterm infants’ lipid nutrition [1] [...]


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yoshiyuki Matsushita ◽  
Kaho Miyoshi ◽  
Naoki Kabeya ◽  
Shuwa Sanada ◽  
Ryosuke Yazawa ◽  
...  

AbstractThe colonisation of freshwater environments by marine fishes has historically been considered a result of adaptation to low osmolality. However, most marine fishes cannot synthesise the physiologically indispensable fatty acid, docosahexaenoic acid (DHA), due to incomplete DHA biosynthetic pathways, which must be adapted to survive in freshwater environments where DHA is poor relative to marine environments. By analysing DHA biosynthetic pathways of one marine and three freshwater-dependent species from the flatfish family Achiridae, we revealed that functions of fatty acid metabolising enzymes have uniquely and independently evolved by multi-functionalisation or neofunctionalisation in each freshwater species, such that every functional combination of the enzymes has converged to generate complete and functional DHA biosynthetic pathways. Our results demonstrate the elaborate patchwork of fatty acid metabolism and the importance of acquiring DHA biosynthetic function in order for fish to cross the nutritional barrier at the mouth of rivers and colonise freshwater environments.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jennifer LaBarre ◽  
Karen Peterson ◽  
Wei Hao ◽  
Maureen Kachman ◽  
Lu Tang ◽  
...  

Abstract Objectives To identify metabolites associated with BMIz and insulin resistance (IR) among 108 girls and 98 boys aged 8–14 years. We sought evidence of whether altered mitochondrial nutrient utilization, as indicated by mitochondrial-derived metabolites, mediates the relationship between diet, IR and obesity. Methods Anthropometry, fasting untargeted-liquid chromatography/mass spectrometry-derived metabolites and C-Peptide, and semi-quantitative food frequency questionnaires were collected from adolescents in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) birth cohort. Sex-stratified generalized linear models were used to identify metabolites that are marginally associated BMIz and HOMA C-peptide (HOMA-CP), accounting for puberty, age and muscle and fat area (FDR < 0.1). Assessed the relationship between energy-adjusted macronutrient intake with HOMA-CP and BMIz. Structural equation models coupled with hierarchical clustering identified clusters of metabolites that may mediate the relationship between macronutrient intake with BMIz and HOMA-CP. Results Stratification by sex demonstrated sex-specific associations with BMIz. Most notable were girl's positive association with diacylglycerols and boy's positive association with branched chain and aromatic amino acids, independent of HOMA-CP. Intermediates in fatty acid metabolism, including medium chain acylcarnitines (acylCN), were inversely associated with HOMA-CP. No direct relationship was observed between macronutrient intake with BMIz and IR. Using mediation analyses, fat intake is positively associated with BMIz and HOMA-CP through increases in levels of dicarboxylic fatty acids (DiC-FA), products of omega-oxidation. Carbohydrate intake is positively associated with HOMA-CP through decreases in levels of medium chain acylCN, products of β-oxidation. Conclusions Insulin resistance in children appears to be associated with reduced fatty acid oxidation capacity. When consuming more grams of fat, there is evidence for increased extra-mitochondrial fatty acid metabolism (DiC-FA), while higher carbohydrate intake appears to lead to accumulation of intermediates of β-oxidation. Thus, biomarkers of IR and mitochondrial oxidative capacity may depend on macronutrient intake. Funding Sources This work was supported by the NIEHS, EPA and NIDDK.


1991 ◽  
Vol 69 (7) ◽  
pp. 490-497 ◽  
Author(s):  
H. G. Parsons ◽  
V. C. Dias

Inborn errors of fatty acid β-oxidation have contributed significantly to our understanding of intracellular fatty acid metabolism. The first intramitochondrial step in β-oxidation of fatty acyl-CoA of different chain lengths is catalyzed by the three chain length specific acyl-CoA dehydrogenases. Inherited deficiency of these enzymes has been reported. Some are riboflavin responsive. The first step of fatty acid oxidation is reviewed with specific emphasis on β-oxidation in newborn infants, rendered riboflavin deficient by phototherapy. Given that medium chain fatty acids are not stored as triacylglycerols and undergo rapid β-oxidation, they have been proposed as superior substrates compared with long chain triglycerides in times of metabolic stress. This review also examines medium chain triglycerides as an alternate energy source. When medium chain triglycerides were fed as 50% of total energy, glucose sparing was present with little loss of energy as dicarboxylic acids.Key words: β-oxidation, acyl-CoA dehydrogenase, riboflavin, medium chain triglycerides, dicarboxylic acids.


Sign in / Sign up

Export Citation Format

Share Document