scholarly journals How Satiating Are the ‘Satiety’ Peptides: A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1517 ◽  
Author(s):  
Jia Jiet Lim ◽  
Sally D. Poppitt

Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.

2017 ◽  
Vol 102 (7) ◽  
pp. 2364-2372 ◽  
Author(s):  
Tricia Tan ◽  
Preeshila Behary ◽  
George Tharakan ◽  
James Minnion ◽  
Werd Al-Najim ◽  
...  

Abstract Background: Roux-en-Y gastric bypass (RYGB) surgery is currently the most effective treatment of obesity, although limited by availability and operative risk. The gut hormones Glucagon-like peptide-1 (GLP-1), Peptide YY (PYY), and Oxyntomodulin (OXM) are elevated postprandially after RYGB, which has been postulated to contribute to its metabolic benefits. Objective: We hypothesized that infusion of the three gut hormones to achieve levels similar to those encountered postprandially in RYGB patients might be effective in suppressing appetite. The aim of this study was to investigate the effect of a continuous infusion of GLP-1, OXM, and PYY (GOP) on energy intake and expenditure in obese volunteers. Methods: Obese volunteers were randomized to receive an infusion of GOP or placebo in a single-blinded, randomized, placebo-controlled crossover study for 10.5 hours a day. This was delivered subcutaneously using a pump device, allowing volunteers to remain ambulatory. Ad libitum food intake studies were performed during the infusion, and energy expenditure was measured using a ventilated hood calorimeter. Results: Postprandial levels of GLP-1, OXM, and PYY seen post RYGB were successfully matched using 4 pmol/kg/min, 4 pmol/kg/min, and 0.4 pmol/kg/min, respectively. This dose led to a mean reduction of 32% in food intake. No significant effects on resting energy expenditure were observed. Conclusion: This is, to our knowledge, the first time that an acute continuous subcutaneous infusion of GOP, replicating the postprandial levels observed after RYGB, is shown to be safe and effective in reducing food intake. This data suggests that triple hormone therapy might be a useful tool against obesity.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Keisuke Suzuki ◽  
Channa N. Jayasena ◽  
Stephen R. Bloom

Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.


2020 ◽  
Vol 105 (4) ◽  
pp. e1064-e1074 ◽  
Author(s):  
Mette S Nielsen ◽  
Christian Ritz ◽  
Nicolai J Wewer Albrechtsen ◽  
Jens Juul Holst ◽  
Carel W le Roux ◽  
...  

Abstract Background Alterations in several gastrointestinal hormones are implicated in the postoperative suppression of food intake leading to weight loss after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). The aim was to evaluate changes in responses of gastrointestinal hormones after RYGB and SG and the associations of these changes with weight loss, energy intake, and food preferences. Methods Forty-two subjects with severe obesity were included (32 RYGB; 10 SG). Postprandial responses of glicentin, oxyntomodulin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and ghrelin were measured before and 6 months after surgery. Energy intake and energy density were assessed before and 6 months after surgery using a buffet meal test and weight loss was assessed 18 months after surgery. Results Postprandial concentrations of glicentin, oxyntomodulin, GLP-1, and ghrelin differed between RYGB and SG (all P ≤ .02). Enhanced responses of glicentin and oxyntomodulin predicted a greater weight loss (both P < .01) and were associated with a larger decrease in energy density (P ≤ .04). No associations were found for GLP-1, PYY, and ghrelin, and changes were not associated with changes in energy intake. When combing all hormones, 60%, 19%, and 33% of the variations in weight loss, energy intake, and energy density, respectively, could be explained. Conclusion Postprandial responses of gastrointestinal hormones differed between RYGB and SG. Enhanced responses of glicentin and oxyntomodulin predicted a better weight loss and were associated with a decreased preference for energy-dense foods. Replication of these results could imply an opportunity to identify patients in need of additional support after surgical treatments of obesity.


2017 ◽  
Vol 313 (1) ◽  
pp. E37-E47 ◽  
Author(s):  
Judith N. Gorski ◽  
Michele J. Pachanski ◽  
Joel Mane ◽  
Christopher W. Plummer ◽  
Sarah Souza ◽  
...  

G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.


1999 ◽  
Vol 58 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Neil A. King

It is intuitive that an energy deficit induced by exercise induces an automatic increased drive for food (hunger and energy intake). However, the absence of a compensatory increase in energy intake (EI) in response to an exercise-induced increase in energy expenditure (EE) is now well documented. Thus, there is a weak coupling between exercise-induced increases in EE and EI. One paradox related to the phenomenon of a weak coupling between the exercise-induced EE and EI is the observation of a positive relationship between physical activity and food intake in the long-term free-living situation (i.e. tight coupling between EE and EI). It is possible, therefore, that a period of transition (uncoupling) occurs in the short-term, before a steady-state (coupling) condition is achieved. It is likely that a combination of physiological and behavioural adaptations occur in order to achieve a tight coupling between EE and EI. The precise physiological and behavioural changes that take place to obtain a new equilibrium (i.e. coupling between EE and EI) are still undetermined. The expectation that exercise-induced increases in EE should drive up hunger and food intake tends to be based on the concept of a strong coupling between physiology and behaviour. However, because of the individual's strong volitional control over eating behaviour, the psychological influences on the appetite response to exercise should not be undervalued. The psychological position of the individual (e.g. dietary restraint, food-related cognitions, reasons for exercising) could have a very strong influence on the food intake response to exercise. Misjudgements concerning the energy value of the food (EI) relative to the energy value of the exercise (EE) could be one possibility why exercise fails to be a successful method of weight loss for some individuals.


2016 ◽  
Vol 40 (11) ◽  
pp. 1699-1706 ◽  
Author(s):  
M S Svane ◽  
N B Jørgensen ◽  
K N Bojsen-Møller ◽  
C Dirksen ◽  
S Nielsen ◽  
...  

2019 ◽  
Vol 78 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Nuno Casanova ◽  
Kristine Beaulieu ◽  
Graham Finlayson ◽  
Mark Hopkins

This review examines the metabolic adaptations that occur in response to negative energy balance and their potential putative or functional impact on appetite and food intake. Sustained negative energy balance will result in weight loss, with body composition changes similar for different dietary interventions if total energy and protein intake are equated. During periods of underfeeding, compensatory metabolic and behavioural responses occur that attenuate the prescribed energy deficit. While losses of metabolically active tissue during energy deficit result in reduced energy expenditure, an additional down-regulation in expenditure has been noted that cannot be explained by changes in body tissue (e.g. adaptive thermogenesis). Sustained negative energy balance is also associated with an increase in orexigenic drive and changes in appetite-related peptides during weight loss that may act as cues for increased hunger and food intake. It has also been suggested that losses of fat-free mass (FFM) could also act as an orexigenic signal during weight loss, but more data are needed to support these findings and the signalling pathways linking FFM and energy intake remain unclear. Taken together, these metabolic and behavioural responses to weight loss point to a highly complex and dynamic energy balance system in which perturbations to individual components can cause co-ordinated and inter-related compensatory responses elsewhere. The strength of these compensatory responses is individually subtle, and early identification of this variability may help identify individuals that respond well or poorly to an intervention.


2005 ◽  
Vol 288 (2) ◽  
pp. E447-E453 ◽  
Author(s):  
April D. Strader ◽  
Torsten P. Vahl ◽  
Ronald J. Jandacek ◽  
Stephen C. Woods ◽  
David A. D’Alessio ◽  
...  

Bariatric surgeries, such as gastric bypass, result in dramatic and sustained weight loss that is usually attributed to a combination of gastric volume restriction and intestinal malabsorption. However, studies parceling out the contribution of enhanced intestinal stimulation in the absence of these two mechanisms have received little attention. Previous studies have demonstrated that patients who received intestinal bypass or Roux-en-Y surgery have increased release of gastrointestinal hormones. One possible mechanism for this increase is the rapid transit of nutrients into the intestine after eating. To determine whether there is increased secretion of anorectic peptides produced in the distal small intestine when this portion of the gut is given greater exposure to nutrients, we preformed ileal transpositions (IT) in rats. In this procedure, an isolated segment of ileum is transposed to the jejunum, resulting in an intestinal tract of normal length but an alteration in the normal distribution of endocrine cells along the gut. Rats with IT lost more weight ( P < 0.05) and consumed less food ( P < 0.05) than control rats with intestinal transections and reanastomosis without transposition. Weight loss in the IT rats was not due to malabsorption of nutrients. However, transposition of distal gut to a proximal location caused increased synthesis and release of the anorectic ileal hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY; P < 0.01). The association of weight loss with increased release of GLP-1 and PYY suggests that procedures that promote gastrointestinal endocrine function can reduce energy intake. These findings support the importance of evaluating the contribution of gastrointestinal hormones to the weight loss seen with bariatric surgery.


2005 ◽  
Vol 64 (2) ◽  
pp. 213-216 ◽  
Author(s):  
C. W. le Roux ◽  
S. R. Bloom

Obesity is taking on pandemic proportions. The laws of thermodynamics, however, remain unchanged, as energy will be stored if less energy is expended than consumed; the storage is usually in the form of adipose tissue. Several neural, humeral and psychological factors control the complex process known as appetite. Recently, a close evolutionary relationship between the gut and brain has become apparent. The gut hormones regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. Peptide YY (PYY) is a thirty-six amino acid peptide related to neuropeptide Y (NPY) and is co-secreted with glucagon-like peptide 1. Produced by the intestinal L-cells, the highest tissue concentrations of PYY are found in distal segments of the gastrointestinal tract, although it is present throughout the gut. Following food intake PYY is released into the circulation. PYY concentrations are proportional to meal energy content and peak plasma levels appear postprandially after 1 h. PYY3-36 is a major form of PYY in both the gut mucosal endocrine cells and the circulation. Peripheral administration of PYY3-36 inhibits food intake for several hours in both rodents and man. The binding of PYY3-36 to the Y2 receptor leads to an inhibition of the NPY neurones and a possible reciprocal stimulation of the pro-opiomelanocortin neurones. Thus, PYY3-36 appears to control food intake by providing a powerful feedback on the hypothalamic circuits. The effect on food intake has been demonstrated at physiological concentrations and, therefore, PYY3-36 may be important in the everyday regulation of food intake.


Endocrinology ◽  
2007 ◽  
Vol 148 (12) ◽  
pp. 6054-6061 ◽  
Author(s):  
Jonathan D. Roth ◽  
Todd Coffey ◽  
Carolyn M. Jodka ◽  
Holly Maier ◽  
Jennifer R. Athanacio ◽  
...  

Circulating levels of the pancreatic β-cell peptide hormone amylin and the gut peptide PYY[3–36] increase after nutrient ingestion. Both have been implicated as short-term signals of meal termination with anorexigenic and weight-reducing effects. However, their combined effects are unknown. We report that the combination of amylin and PYY[3–36] elicited greater anorexigenic and weight-reducing effects than either peptide alone. In high-fat-fed rats, a single ip injection of amylin (10 μg/kg) plus PYY[3–36] (1000 μg/kg) reduced food intake for 24 h (P &lt; 0.05 vs. vehicle), whereas the anorexigenic effects of either PYY[3–36] or amylin alone began to diminish 6 h after injection. These anorexigenic effects were dissociable from changes in locomotor activity. Subcutaneous infusion of amylin plus PYY[3–36] for 14 d suppressed food intake and body weight to a greater extent than either agent alone in both rat and mouse diet-induced obesity (DIO) models (P &lt; 0.05). In DIO-prone rats, 24-h metabolic rate was maintained despite weight loss, and amylin plus PYY[3–36] (but not monotherapy) increased 24-h fat oxidation (P &lt; 0.05 vs. vehicle). Finally, a 4 × 3 factorial design was used to formally describe the interaction between amylin and PYY[3–36]. DIO-prone rats were treated with amylin (0, 4, 20, and 100 μg/kg·d) and PYY[3–36] (0, 200, 400 μg/kg·d) alone and in combination for 14 d. Statistical analyses revealed that food intake suppression with amylin plus PYY[3–36] treatment was synergistic, whereas body weight reduction was additive. Collectively, these observations highlight the importance of studying peptide hormones in combination and suggest that integrated neurohormonal approaches may hold promise as treatments for obesity.


Sign in / Sign up

Export Citation Format

Share Document