scholarly journals Fatty Acid Reference Intervals in Red Blood Cells among Pregnant Women in Norway–Cross Sectional Data from the ‘Little in Norway’ Cohort

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2950
Author(s):  
Pedro Araujo ◽  
Marian Kjellevold ◽  
Ive Nerhus ◽  
Lisbeth Dahl ◽  
Inger Aakre ◽  
...  

There is a growing interest in determining fatty acid reference intervals from pregnancy cohort, especially considering the lack of reference values for pregnant women in the literature and the generalized misconception of equating reference intervals for nonpregnant women as equivalent to pregnant women. Seafood and supplements are important dietary sources for the omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFA), such as eicosapentaenoic acid (EPA, 20:5ω-3), docosapentaenoic acid (DPA, 22:55ω-3), and docosahexaenoic acid (DHA, 22:6ω-3). Sufficient intake of EPA and DHA is vital during pregnancy for the development of the fetus, as well as for maintaining adequate levels for the mother. This study describes the fatty acid status and suggests reference values and cut-offs for fatty acids in red blood cells (RBC) from pregnant women (n = 247). An electronic food frequency questionnaire (e-FFQ) mapped the dietary habits of the participants, and gas chromatography was used to determine the fatty acid levels in RBC. The association between e-FFQ variables and fatty acid concentrations was established using a principal component analysis (PCA). Twenty-nine-point-one percent (29.1%) of the participants reported eating seafood as dinner according to the Norwegian recommendations, and they added in their diet as well a high percentage (76.9%) intake of ω-3 supplements. The concentration levels of fatty acids in RBC were in agreement with those reported in similar populations from different countries. The reference interval 2.5/97.5 percentiles for EPA, DPA, DHA were 0.23/2.12, 0.56/2.80, 3.76/10.12 in relative concentration units (%), and 5.99/51.25, 11.08/61.97, 64.25/218.08 in absolute concentration units (µg/g), respectively. The number of participants and their selection from all over Norway vouch for the representativeness of the study and the validity of the proposed reference values, and therefore, the study may be a useful tool when studying associations between fatty acid status and health outcome in future studies. To the best of our knowledge, this is the first PCA study reporting a direct association between ω-3 LCPUFA and intake of seafood and ω-3 supplements in a pregnancy cohort.

2020 ◽  
Vol 76 (1) ◽  
pp. 3-6
Author(s):  
Varinderpal S Dhillon ◽  
Permal Deo ◽  
Ann Chua ◽  
Phil Thomas ◽  
Michael Fenech

Abstract Lymphocyte telomere length (LTL) is a biomarker of aging that may be modified by dietary factors including fat. Red blood cell fatty acid status is a well-validated indicator of long-term dietary intake of fat from various sources. Recent findings from epidemiological studies of LTL in relation to fatty acids in red blood cells are not conclusive. The present study was carried out to investigate if red blood cell fatty acid status in 174 healthy older South Australians is associated with LTL. Lymphocyte telomere length was measured by real-time qPCR and fatty acid content in red blood cells was measured by gas chromatography. Our results indicate that the majority of saturated fatty acids and monounsaturated fatty acids are negatively associated with LTL, whereas polyunsaturated fatty acids are positively associated with LTL. Multiple regression analysis revealed that arachidonic acid (C20:4n-6) is significantly, independently, positively correlated with LTL (β = 0.262; p = .000). The significant association of fatty acids, particularly C20:4n-6, with telomere length warrants further research.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Sonoor Majid ◽  
Sophia Kisling ◽  
James Allen ◽  
Charles Wood ◽  
Catherine Chunda ◽  
...  

2012 ◽  
Vol 107 (S2) ◽  
pp. S53-S63 ◽  
Author(s):  
Mario Klingler ◽  
Berthold Koletzko

Over the last few decadesn-3 long chain polyunsaturated fatty acid status became of special interest for scientists. Biochemical measures on then-3 fatty acid status vary depending on body compartment assessed and measures chosen. Plasma phospholipids and red blood cell membrane phospholipids are mainly used asn-3 fatty acid status marker. The conventional analysis of phospholipid fatty acids involves lipid extraction and consecutive chromatographic separation of phospholipids from other lipid fractions, which is time-consuming and costly. In recent years, different investigators have tried to overcome these limitations by using other biological markers or by modifying the analytical procedures used to assessn-3 fatty acid status. The aim of this systematic review was to provide an overview on these novel analytical methods developed for the fatty acid quantification by gas chromatography, highlights the methodological limitations, and discusses advantages or disadvantages of the biological markers used. Seventeen papers were identified that fulfilled the inclusion criteria. New opportunities arise from sensitive and precise high-throughput methodologies for assessment of plasma total lipid and plasma glycerophospholipid fatty acids, as well as cheek cell fatty acid composition.


2012 ◽  
Vol 109 (5) ◽  
pp. 962-968 ◽  
Author(s):  
Mario Klingler ◽  
Sabrina Klem ◽  
Hans Demmelmair ◽  
Berthold Koletzko

Adequate intake of n-3 fatty acids plays an important role in human health. The analysis of various blood lipids is used as a measure of fatty acid status in humans. Cheek cell phospholipids (PL) have also been proposed as biological markers, but are rarely used in clinical studies due to limitations in sample quality and quantity. An improved method for the analysis of cheek cell glycerophospholipid fatty acids is applied in a 29 d supplementation trial with 510 mg DHA daily. The DHA increases in cheek cell, plasma and erythrocyte glycerophospholipids are compared. High correlations are shown for glycerophospholipid DHA between cheek cells and plasma (r 0·88) and erythrocytes (r 0·76) before study commencement. After the daily supplementation of DHA, the half-maximal glycerophospholipid DHA level is reached after about 4 d in plasma, 6 d in erythrocytes and 10 d in cheek cells. The mean DHA increase (mol%) relative to baseline was most prominent in plasma (186 %), followed by cheek cells (180 %) and erythrocytes (130 %). Considering a lag phase of about 5 d, cheek cells reflect short-term changes in dietary fat uptake. Based on the data of the present study, they can be used alternatively to plasma and erythrocyte PL as non-invasive n-3 fatty acid status markers.


2017 ◽  
Vol 117 (9) ◽  
pp. 1257-1269 ◽  
Author(s):  
Andrew J. Young ◽  
Bernadette P. Marriott ◽  
Catherine M. Champagne ◽  
Michael R. Hawes ◽  
Scott J. Montain ◽  
...  

AbstractMilitary personnel generally under-consume n-3 fatty acids and overconsume n-6 fatty acids. In a placebo-controlled, double-blinded study, we investigated whether a diet suitable for implementation in military dining facilities and civilian cafeterias could benefit n-3/n-6 fatty acid status of consumers. Three volunteer groups were provided different diets for 10 weeks. Control (CON) participants consumed meals from the US Military’s Standard Garrison Dining Facility Menu. Experimental, moderate (EXP-Mod) and experimental-high (EXP-High) participants consumed the same meals, but high n-6 fatty acid and low n-3 fatty acid containing chicken, egg, oils and food ingredients were replaced with products having less n-6 fatty acids and more n-3 fatty acids. The EXP-High participants also consumed smoothies containing 1000 mg n-3 fatty acids per serving, whereas other participants received placebo smoothies. Plasma and erythrocyte EPA and DHA in CON group remained unchanged throughout, whereas EPA, DHA and Omega-3 Index increased in EXP-Mod and EXP-High groups, and were higher than in CON group after 5 weeks. After 10 weeks, Omega-3 Index in EXP-High group had increased further. No participants exhibited changes in fasting plasma TAG, total cholesterol, LDL, HDL, mood or emotional reactivity. Replacing high linoleic acid (LA) containing foods in dining facility menus with similar high oleic acid/low LA and high n-3 fatty acid foods can improve n-6/n-3 blood fatty acid status after 5 weeks. The diets were well accepted and suitable for implementation in group feeding settings like military dining facilities and civilian cafeterias.


2012 ◽  
Vol 109 (9) ◽  
pp. 1688-1694 ◽  
Author(s):  
Tao Huang ◽  
Xiaomei Yu ◽  
Tianxing Shou ◽  
Mark L. Wahlqvist ◽  
Duo Li

The association of plasma phospholipid (PL) fatty acid composition with plasma homocysteine (Hcy) in Chinese vegetarians is not understood. The main aim of the present study was to investigate the plasma PL fatty acid status, and its association with plasma Hcy in Chinese vegetarians and omnivores. A total of 103 male vegetarians and 128 male omnivores were recruited in Linyin Temple, Hangzhou. Plasma Hcy and PL fatty acid concentrations were determined by standard methods. Compared with omnivores, plasma PL n-3 PUFA (P< 0·001), 22 : 6n-3 (P< 0·001), 22 : 5n-6 (P= 0·021), 22 : 2n-6 (P< 0·001) and SFA (P= 0·017) were significantly lower, while plasma PL n-6 PUFA (P= 0·007) and total PUFA (P< 0·001) were significantly higher in vegetarians. The prevalence of hyperhomocysteinaemia (HHcy) in vegetarians (26·47 %) was significantly higher than that in omnivores (13·28 %). In vegetarians, plasma PL 22 : 6n-3 (r − 0·257, P= 0·046) was significantly negatively associated with plasma Hcy. In omnivores, plasma PL 18 : 1n-7 (r 0·237, P= 0·030) was significantly positively associated with plasma Hcy. Plasma PL 22 : 6n-3 (r − 0·217, P= 0·048) was negatively associated with plasma Hcy in omnivores. Plasma PL SFA were positively associated with the prevalence of HHcy. It would seem appropriate for vegetarians to increase their dietary n-3 PUFA and decrease dietary SFA, and thus reduce the risk of HHcy.


Sign in / Sign up

Export Citation Format

Share Document