scholarly journals Different Dietary N-3 Polyunsaturated Fatty Acid Formulations Distinctively Modify Tissue Fatty Acid and N-Acylethanolamine Profiles

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 625
Author(s):  
Elisabetta Murru ◽  
Paula A. Lopes ◽  
Gianfranca Carta ◽  
Claudia Manca ◽  
Armita Abolghasemi ◽  
...  

We investigated the influence of different dietary formulation of n-3 polyunsaturated fatty acids (PUFA) on rat tissue fatty acid (FA) incorporation and consequent modulation of their bioactive metabolite N-acylethanolamines (NAE). For 10 weeks, rats were fed diets with 12% of fat from milk + 4% soybean oil and 4% of oils with different n-3 PUFA species: soybean oil as control, linseed oil rich in α-linolenic (ALA), Buglossoides arvensis oil rich in ALA and stearidonic acid (SDA), fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Nannochloropsis microalga oil rich in EPA or Schizochytrium microalga oil rich in DHA. FA and NAE profiles were determined in plasma, liver, brain and adipose tissues. Different dietary n-3 PUFA distinctively influenced tissue FA profiles and consequently NAE tissue concentrations. Interestingly, in visceral adipose tissue the levels of N-arachidonoylethanolamide (AEA) and N-docosahexaenoylethanolamide (DHEA), NAE derived from arachidonic acid (AA) and DHA, respectively, significantly correlated with NAE in plasma, and circulating DHEA levels were also correlated with those in liver and brain. Circulating NAE derived from stearic acid, stearoylethanolamide (SEA), palmitic acid and palmitoylethanolamide (PEA) correlated with their liver concentrations. Our data indicate that dietary n-3 PUFA are not all the same in terms of altering tissue FA and NAE concentrations. In addition, correlation analyses suggest that NAE levels in plasma may reflect their concentration in specific tissues. Given the receptor-mediated tissue specific metabolic role of each NAE, a personalized formulation of dietary n-3 PUFA might potentially produce tailored metabolic effects in different pathophysiological conditions.

2012 ◽  
Vol 81 (2) ◽  
pp. 159-162 ◽  
Author(s):  
Petra Hudečková ◽  
Lucie Rusníková ◽  
Eva Straková ◽  
Pavel Suchý ◽  
Petr Marada ◽  
...  

The aim of this study was to compare the effect of two different types of oils in diet on the fatty acid profile in the eggs of layers and to include a particular type of oil as a supplement of feeding mixtures for layers in order to support the development of functional foodstuffs. Thirty layers fed a diet containing soybean oil constituted the control group (soybean oil is the most frequently used oil added to feeding mixtures). In the experimental group (thirty layers), soybean oil was replaced with linseed oil at the same amount (3 kg of oil per 100 kg of feeding mixture). Feeding was provided ad libitum for all days of the month. After one month, egg yolks were analysed and the fatty acid profile was compared. Significant differences (P ≤ 0.05) were found in the concentration of myristic acid that belongs to the group of saturated fatty acids. Eggs in the experimental group showed higher concentrations of myristic acid compared to the control group (0.20 g/100 g of fat and 0.18 g/100 g of fat, respectively). Highly significant differences (P ≤ 0.01) were found for heptadecanoic acid but the trend was opposite to that of myristic acid; concentrations of heptadecanoic acid in the experimental group were lower than those in the control group. Highly significant differences (P ≤ 0.01) were found for n-9 monounsaturated fatty acids where egg yolks in eggs from layers fed linseed oil contained higher concentrations of oleic acid, myristoleic acid, and palmitoleic acid. Lower concentrations of n-6 fatty acids (P ≤ 0.01) were found after the addition of linseed oil in eggs. Linseed oil showed a positive effect on n-3 fatty acids (α-linolenic acid), its concentration in the control and experimental group was 0.82 g/100 g of fat and 5.63 g/100 g of fat, respectively. The possibility of influencing the fatty acid profile in eggs is very important for the development of functional foods.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 508 ◽  
Author(s):  
Shenfei Long ◽  
Sujie Liu ◽  
Di Wu ◽  
Shad Mahfuz ◽  
Xiangshu Piao

This study aimed to investigate the efficiency of dietary fatty acids from various sources on growth performance, meat quality, muscle fatty acid deposition and antioxidant capacity in broilers. 126 Arbor Acres broilers (1 d-old, initial body weight of 45.5 ± 0.72 g) were randomly assigned to three treatments with seven cages per treatment and six broilers per cage. The dietary treatments included: (1) corn–soybean meal basal diet containing 3% soybean oil (control diet, CTL); (2) basal diet + 1% microalgae + 1% linseed oil + 1% soybean oil (ML); (3) basal diet + 2% fish oil + 1% soybean oil (FS). The trial consisted of phase 1 (day 1 to 21) and 2 (day 22 to 42). Compared with CTL, broilers fed ML or FS diet showed improved (p < 0.05) average daily gain in phase 1, 2, and overall (day 1 to 42), as well as a decreased (p < 0.05) feed conversion ratio in phase 1 and overall. On day 42, broilers supplemented with FS diet showed increased (p ≤ 0.05) the relative weights of pancreas and liver, as well as higher (p < 0.05) redness value in breast and thigh muscle compared with CTL. Broilers offered ML or FS diet had lower (p < 0.05) the relative weight of abdominal fat and total serum cholesterol content in phase 1, and increased (p < 0.05) contents of serum glucose, n-3 polyunsaturated fatty acids (PUFA), eicosacagetaenoic acid, docosahexaenoic acid, glutathione peroxidase, superoxide dismutase and total antioxidant capacity, as well as lower (p < 0.05) concentrations of malondialdehyde, n-6 PUFA, and n-6/n-3 PUFA ratio in breast and thigh muscle compared with CTL. This research indicates that diets supplemented with fish oil or a combination of microalgae and linseed oil experience improved performance, antioxidant capacities and n-3 PUFA profile in muscle of broilers compared with traditional soybean oil supplemented diets


1995 ◽  
Vol 73 (5) ◽  
pp. 1372-1380 ◽  
Author(s):  
A. Perez Rigau ◽  
M. D. Lindemann ◽  
E. T. Kornegay ◽  
A. F. Harper ◽  
B. A. Watkins

2013 ◽  
Vol 698 (1-3) ◽  
pp. 489-498 ◽  
Author(s):  
Rajendran Naresh Kumar ◽  
Ramalingam Sundaram ◽  
Palanivelu Shanthi ◽  
Panchanatham Sachdanandam

Sign in / Sign up

Export Citation Format

Share Document