scholarly journals Long-Term Effects of Bariatric Surgery on Gut Microbiota Composition and Faecal Metabolome Related to Obesity Remission

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2519
Author(s):  
María Juárez-Fernández ◽  
Sara Román-Sagüillo ◽  
David Porras ◽  
María Victoria García-Mediavilla ◽  
Pedro Linares ◽  
...  

Obesity is one of the main worldwide public health concerns whose clinical management demands new therapeutic approaches. Bariatric surgery is the most efficient treatment when other therapies have previously failed. Due to the role of gut microbiota in obesity development, the knowledge of the link between bariatric surgery and gut microbiota could elucidate new mechanistic approaches. This study aims to evaluate the long-term effects of bariatric surgery in the faecal metagenome and metabolome of patients with severe obesity. Faecal and blood samples were collected before and four years after the intervention from patients with severe obesity. Biochemical, metagenomic and metabolomic analyses were performed and faecal short-chain fatty acids were measured. Bariatric surgery improved the obesity-related status of patients and significantly reshaped gut microbiota composition. Moreover, this procedure was associated with a specific metabolome profile characterized by a reduction in energetic and amino acid metabolism. Acetate, butyrate and propionate showed a significant reduction with bariatric surgery. Finally, correlation analysis suggested the existence of a long-term compositional and functional gut microbiota profile associated with the intervention. In conclusion, bariatric surgery triggered long-lasting effects on gut microbiota composition and faecal metabolome that could be associated with the remission of obesity.

Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1613 ◽  
Author(s):  
Andrea Brusaferro ◽  
Rita Cozzali ◽  
Ciriana Orabona ◽  
Anna Biscarini ◽  
Edoardo Farinelli ◽  
...  

In recent years, attention has been given to the role potentially played by gut microbiota in the development of obesity. Several studies have shown that in individuals with obesity, the gut microbiota composition can be significantly different from that of lean individuals, that faecal bacteria can exert a fundamental role in modulating energy metabolism, and that modifications of gut microbiota composition can be associated with increases or reductions of body weight and body mass index. Based on this evidence, manipulation of the gut microbiota with probiotics has been considered a possible method to prevent and treat obesity. However, despite a great amount of data, the use of probiotics to prevent and treat obesity and related problems remains debated. Studies have found that the probiotic effect on body weight and metabolism is strain specific and that only some of the species included in the Lactobacillus and Bifidobacterium genera are effective, whereas the use of other strains can be deleterious. However, the dosage, duration of administration, and long-term effects of probiotics administration to prevent overweight and obesity are not known. Further studies are needed before probiotics can be rationally prescribed for the prevention or treatment of obesity. Control of the diet and environmental and life-style factors that favour obesity development remain the best solution to problems related to weight gain.


2018 ◽  
Vol 227 (4) ◽  
pp. S15-S16
Author(s):  
Silvia S. Palmisano ◽  
Giuseppina Campisciano ◽  
Marta Silvestri ◽  
Martina Guerra ◽  
Michela Giuricin ◽  
...  

Nature ◽  
2018 ◽  
Vol 563 (7731) ◽  
pp. E25-E25
Author(s):  
Marcus Fulde ◽  
Felix Sommer ◽  
Benoit Chassaing ◽  
Kira van Vorst ◽  
Aline Dupont ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jessica C. Ralston ◽  
Kathleen A.J. Mitchelson ◽  
Gina M. Lynch ◽  
Tam T.T. Tran ◽  
Conall R. Strain ◽  
...  

AbstractReduced inflammatory signaling (IL-1RI-/-) alters metabolic responses to dietary challenges (1). Inflammasome deficiency (e.g. IL-18-/-, Asc-/-) can modify gut microbiota concomitant with hepatosteatosis; an effect that was transferable to wild-type (WT) mice by co-housing (2). Taken together, this evidence suggests that links between diet, microbiota and IL-1RI-signaling can influence metabolic health. Our aim was to determine whether IL-1RI-mediated signaling interacted with the gut microbiome to impact metabolic tissue functionality in a diet-specific fashion. Male WT (C57BL/J6) and IL-1RI-/- mice were fed either high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for 24 weeks and were housed i) separately by genotype or ii) with genotypes co-housed together (i.e. isolated vs shared microbial environment; n = 8–10 mice per group). Glucose tolerance and insulin secretion response (1.5 g/kg i.p.), gut microbiota composition and caecal short-chain fatty acids (SCFA) were assessed. Liver and adipose tissue were harvested and examined for triacylglycerol (TAG) formation, cholesterol and metabolic markers (Fasn, Cpt1α, Pparg, Scd1, Dgat1/2), using histology, gas-chromatography and RT-PCR, respectively. Statistical analysis included 1-way or 2-way ANOVA, where appropriate, with Bonferroni post-hoc correction. Co-housing significantly affected gut microbiota composition, illustrated by clustering in PCoA (unweighted UniFrac distance) of co-housed mice but not their single-housed counterparts, on both HFD and LFD. The taxa driving these differences were primarily from Lachnospiraceae and Ruminococcaceae families. Single-housed WT had lower hepatic weight, TAG, cholesterol levels and Fasn despite HFD, an effect lost in their co-housed counterparts, who aligned more to IL-1RI-/- hepatic lipid status. Hepatic Cpt1α was lowest in co-housed WT. Adipose from IL-1RI-/- groups on HFD displayed increased adipocyte size and reduced adipocyte number compared to WT groups, but greater lipogenic potential (Pparg, Scd1, Dgat2) alongside a blunted IL-6 response to pro-inflammatory stimuli (~32%, P = 0.025). Whilst caecal SCFA concentrations were not different between groups, single-housed IL-1RI-/- adipocytes showed greatest sensitivity to SCFA-induced lipogenesis. Interestingly, differences in tissue functionality and gut microbiome occurred despite unaltered glucose tolerance; although there was a trend for phenotypic transfer of body weight via co-housing. For all endpoints examined, similar genotype/co-housing effects were observed for both HFD and LFD with the greatest impacts seen in HFD-fed mice. In conclusion, while the gut microbiome may be an important consideration in dietary interventions, these results question the magnitude of its impact in relation to the IL-1RI-dependent immunometabolism-glucose homeostasis axis.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3408
Author(s):  
Samar Y. Ahmad ◽  
James Friel ◽  
Dylan Mackay

Non-nutritive artificial sweeteners (NNSs) may have the ability to change the gut microbiota, which could potentially alter glucose metabolism. This study aimed to determine the effect of sucralose and aspartame consumption on gut microbiota composition using realistic doses of NNSs. Seventeen healthy participants between the ages of 18 and 45 years who had a body mass index (BMI) of 20–25 were selected. They undertook two 14-day treatment periods separated by a four-week washout period. The sweeteners consumed by each participant consisted of a standardized dose of 14% (0.425 g) of the acceptable daily intake (ADI) for aspartame and 20% (0.136 g) of the ADI for sucralose. Faecal samples collected before and after treatments were analysed for microbiome and short-chain fatty acids (SCFAs). There were no differences in the median relative proportions of the most abundant bacterial taxa (family and genus) before and after treatments with both NNSs. The microbiota community structure also did not show any obvious differences. There were no differences in faecal SCFAs following the consumption of the NNSs. These findings suggest that daily repeated consumption of pure aspartame or sucralose in doses reflective of typical high consumption have minimal effect on gut microbiota composition or SCFA production.


2019 ◽  
Vol 24 (8) ◽  
pp. 1736-1746 ◽  
Author(s):  
Silvia Palmisano ◽  
Giuseppina Campisciano ◽  
Marta Silvestri ◽  
Martina Guerra ◽  
Michela Giuricin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document