scholarly journals Genetically Predicted Milk Intake and Risk of Neurodegenerative Diseases

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2893
Author(s):  
Zhizhong Zhang ◽  
Mengmeng Wang ◽  
Shuai Yuan ◽  
Susanna C. Larsson ◽  
Xinfeng Liu

Milk intake has been associated with risk of neurodegenerative diseases in observational studies. Nevertheless, whether the association is causal remains unknown. We adopted Mendelian randomization design to evaluate the potential causal association between milk intake and common neurodegenerative diseases, including multiple sclerosis (MS), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD). Genetic associations for neurodegenerative diseases were obtained from the International Multiple Sclerosis Genetics Consortium (n = 80,094), FinnGen consortium (n = 176,899), AD GWAS (n = 63,926), Web-Based Study of Parkinson’s Disease (n = 308,518), PDGene (n = 108,990), and ALS GWAS (n = 80,610). Lactase persistence variant rs4988235 (LCT-13910 C > T) was used as the instrumental variable for milk intake. Genetically predicted higher milk intake was associated with a decreased risk of MS and AD and with an increased risk of PD. For each additional milk intake increasing allele, the odds ratios were 0.94 (95% confidence intervals [CI]: 0.91–0.97; p = 1.51 × 10−4) for MS, 0.97 (0.94–0.99; p = 0.019) for AD and 1.09 (95%CI: 1.06–1.12, p = 9.30 × 10−9) for PD. Genetically predicted milk intake was not associated with ALS (odds ratio: 0.97, 95%CI: 0.94–1.01, p = 0.135). Our results suggest that genetically predicted milk intake is associated with a decreased risk of MS and AD but with an increased risk of PD. Further investigations are needed to clarify the underlying mechanisms.

Author(s):  
Lars-Gunnar Gunnarsson ◽  
Lennart Bodin

Objectives: To carry out an integrated and stratified meta-analysis on occupational exposure to electromagnetic fields (EMFs), metals and pesticides and its effects on amyotrophic lateral sclerosis (ALS) and Parkinson’s and Alzheimer’s disease, and investigate the possibility of publication bias. Methods: In the current study, we updated our recently published meta-analyses on occupational exposures in relation to ALS, Alzheimer’s and Parkinson’s disease. Based on 66 original publications of good scientific epidemiological standard, according to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) guidelines, we analysed subgroups by carrying out stratified meta-analyses on publication year, statistical precision of the relative risk (RR) estimates, inspection of the funnel plots and test of bias. Results: Based on 19 studies the weighted RR for occupational exposure to EMFs was 1.26 (95% confidence interval (CI) 1.07–1.50) for ALS, 1.33 (95% CI 1.07–1.64) for Alzheimer’s disease and 1.02 (95% CI 0.83–1.26) for Parkinson’s disease. Thirty-one studies concerned occupational exposure to pesticides and the weighted RR was 1.35 (95% CI 1.02–1.79) for ALS, 1.50 (95% CI 0.98–2.29) for Alzheimer’s disease and 1.66 (95% CI 1.42–1.94) for Parkinson’s disease. Finally, 14 studies concerned occupational exposure to metals and only exposure to lead (five studies) involved an elevated risk for ALS or Parkinson’s disease and the weighted RR was 1.57 (95% CI 1.11–2.20). The weighted RR for all the non-lead exposures was 0.97 (95% CI 0.88–1.06). Conclusions: Exposure to pesticides increased the risk of getting the mentioned neurodegenerative diseases by at least 50%. Exposure to lead was only studied for ALS and Parkinson’s disease and involved 50% increased risk. Occupational exposure to EMFs seemed to involve some 10% increase in risk for ALS and Alzheimer’s disease only.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Can Cui ◽  
Jiangwei Sun ◽  
Yudi Pawitan ◽  
Fredrik Piehl ◽  
Honglei Chen ◽  
...  

Abstract Serum creatinine and C-reactive protein have been proposed as potential biomarkers for neurodegenerative diseases, including amyotrophic lateral sclerosis, multiple sclerosis and Parkinson’s disease. However, longitudinal studies investigating temporal patterns of these biomarkers, including the phase before diagnosis, are rare. We performed a case–control study including all newly diagnosed patients with amyotrophic lateral sclerosis (N = 525), multiple sclerosis (N = 1815) or Parkinson’s disease (N = 3797) during 2006–2013 in Stockholm, Sweden, who participated in the Stockholm CREAtinine Measurements (SCREAM) project. For each case, we randomly selected up to five controls from SCREAM that were individually matched to the case by age, sex and county of residence (N = 2625 for amyotrophic lateral sclerosis, N = 9063 for multiple sclerosis and 18 960 for Parkinson’s disease). We collected for both the cases and the controls testing results of serum creatinine and C-reactive protein performed by healthcare providers in Stockholm during the study period. Median levels of creatinine and C-reactive protein were visualized using locally weighted smoothing curves among cases and controls. A linear mixed model was also applied to explore temporal changes within an individual. Compared to controls, patients with amyotrophic lateral sclerosis had lower levels of creatinine from 2 years before diagnosis onwards. In contrast, patients with amyotrophic lateral sclerosis had lower levels of C-reactive protein before diagnosis but higher levels after diagnosis, compared to controls. Focusing the 2 years before to 2 years after diagnosis, patients with amyotrophic lateral sclerosis displayed statistically significantly decreasing level of creatinine from 1 year before diagnosis until 2 years after diagnosis, whereas increasing level of C-reactive protein from diagnosis until 2 years after diagnosis. There were no similar patterns noted among patients with multiple sclerosis or Parkinson’s disease, or the controls of the three patient groups. Patients with amyotrophic lateral sclerosis display distinct temporal patterns of creatinine and C-reactive protein before and after diagnosis, compared to amyotrophic lateral sclerosis-free controls or patients with multiple sclerosis and Parkinson’s disease.


2017 ◽  
Vol 33 ◽  
pp. 99-104 ◽  
Author(s):  
John H. Kindred ◽  
Kaigang Li ◽  
Nathaniel B. Ketelhut ◽  
Felix Proessl ◽  
Brett W. Fling ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1284
Author(s):  
Sachchida Nand Rai ◽  
Payal Singh ◽  
Harry W.M. Steinbusch ◽  
Emanuel Vamanu ◽  
Ghulam Ashraf ◽  
...  

Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson’s disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yi Lu ◽  
Wenzhi Chen ◽  
Caihui Wei ◽  
Yu Zhu ◽  
Renshi Xu

Sporadic Parkinson’s disease (sPD) and sporadic amyotrophic lateral sclerosis (sALS) are neurodegenerative diseases characterized by progressive and selective neuron death, with some genetic similarities. In order to investigate the genetic risk factors common to both sPD and sALS, we carried out a screen of risk alleles for sALS and related loci in 530 sPD patients and 530 controls from the Han population of Mainland China (HPMC). We selected 27 single-nucleotide polymorphisms in 10 candidate genes associated with sALS, and we performed allelotyping and genotyping to determine their frequencies in the study population as well as bioinformatics analysis to assess their functional significance in these diseases. The minor alleles of rs17115303 in DAB adaptor protein 1 (DAB1) gene and rs6030462 in protein tyrosine phosphatase receptor type T (PTPRT) gene were correlated with increased risk of both sPD and sALS. Polymorphisms of rs17115303 and rs6030462 were associated with alterations in transcription factor binding sites, secondary structures, long non-coding RNA interactions, and nervous system regulatory networks; these changes involved biological processes associated with neural cell development, differentiation, neurogenesis, migration, axonogenesis, cell adhesion, and metabolism of phosphate-containing compounds. Thus, variants of DAB1 gene (rs17115303) and PTPRT gene (rs6030462) are risk factors common to sPD and sALS in the HPMC. These findings provide insight into the molecular pathogenesis of both diseases and can serve as a basis for the development of targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document