scholarly journals Zonarol Protected Liver from Methionine- and Choline-Deficient Diet—Induced Nonalcoholic Fatty Liver Disease in a Mouse Model

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3455
Author(s):  
Jia Han ◽  
Xin Guo ◽  
Tomoyuki Koyama ◽  
Daichi Kawai ◽  
Jing Zhang ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with no approved treatment. Zonarol, an extract from brown algae, has been proven to have anti-inflammatory and antioxidant effects. In this study, we investigated the role of zonarol in the progression of methionine- and choline-deficiency (MCD) diet-induced NAFLD in mice. After oral treatment with zonarol, a lighter body weight was observed in zonarol group (ZG) mice in comparison to control group (CG) mice. The NAFLD scores of ZG mice were lower than those of CG mice. Hepatic and serum lipid levels were also lower in ZG mice with the reduced expression of lipid metabolism-related factors. Furthermore, ZG mice showed less lipid deposition, less inflammatory cell infiltration and lower inflammatory cytokine levels in comparison to CG mice. Moreover, the numbers of 8-hydroxy-20-deoxyguanosine (8-OHdG)-positive hepatocytes and levels of hepatic and serum thiobarbituric acid reactive substances (TBARS) were significantly lower in comparison to CG mice. The expression levels of nuclear factor erythroid 2 related factor 2 (Nrf2), as well as its upstream and downstream molecules, changed in ZG mice. Zonarol could prevent the progression of NAFLD by decreasing inflammatory responses, oxidative stress and improving lipid metabolism. Meanwhile the Nrf2 pathway may play an important role in these effects

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sílvia S. Chambel ◽  
Andreia Santos-Gonçalves ◽  
Tiago L. Duarte

Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH), which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.


2020 ◽  
Vol 21 (12) ◽  
pp. 4534
Author(s):  
Da Eun Kim ◽  
Bo Yoon Chang ◽  
Byeong Min Jeon ◽  
Jong In Baek ◽  
Sun Chang Kim ◽  
...  

A ginsenoside F2-enhanced mixture (SGL 121) increases the content of ginsenoside F2 by biotransformation. In the present study, we investigated the effect of SGL 121 on nonalcoholic fatty liver disease (NAFLD) in vitro and in vivo. High-fat, high-carbohydrate-diet (HFHC)-fed mice were administered SGL 121 for 12 weeks to assess its effect on improving NAFLD. In HepG2 cells, SGL 121 acted as an antioxidant, a hepatoprotectant, and had an anti-lipogenic effect. In NAFLD mice, SGL 121 significantly improved body fat mass; levels of hepatic triglyceride (TG), hepatic malondialdehyde (MDA), serum total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL); and activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In HepG2 cells, induced by oxidative stress, SGL 121 increased cytoprotection, inhibited reactive oxygen species (ROS) production, and increased antioxidant enzyme activity. SGL 121 activated the Nrf2/HO-1 signaling pathway and improved lipid accumulation induced by free fatty acids (FFA). Sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) expression was significantly reduced in NAFLD-induced liver and HepG2 cells treated with SGL 121. Moreover, SGL 121 activated adenosine monophosphate-activated protein kinase (AMPK), which plays an important role in the regulation of lipid metabolism. The effect of SGL 121 on the improvement of NAFLD seems to be related to its antioxidant effects and activation of AMPK. In conclusion, SGL 121 can be potentially used for the treatment of NAFLD.


2022 ◽  
Author(s):  
Wermerson Assunção Barroso ◽  
Mariana Barreto Serra ◽  
Iracelle Carvalho Abreu ◽  
Hermes Vieira Barbeiro ◽  
Jarlei Fiamoncini ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mi-Rae Shin ◽  
Sung Ho Shin ◽  
Seong-Soo Roh

Nonalcoholic fatty liver disease (NAFLD) has been a major cause of a chronic liver disease over recent decades and increasing worldwide in parallel with the remarkable growth of obesity. In the present study, we investigate the ameliorative effects of PCM, a combination of Diospyros kaki fruit and Citrus unshiu peel mixture, on high-fat diet- (HFD-) induced NAFLD and clarify the potential mechanisms. PCM in HFD-fed mice was orally administered at a dose of 50 or 100 mg/kg subsequently for 2 months. Thereafter, lipid metabolism parameters and fat synthesis-related genes in the mouse liver were evaluated. Subsequently, body weight changes, liver weight, serum liver function and lipid profiles, and liver pathology were examined, and the relative levels of fatty acid synthesis and β-oxidation gene expression were evaluated by western blot. Serum AST, ALT, and TG levels in the HFD control mice were significantly higher than those of normal mice. Compared with HFD control mice, PCM supplementation increased phosphorylation of AMP-activated protein kinase (AMPK). Peroxisome proliferator-activated receptor (PPAR) α was significantly increased by PCM administration. Continuously, the activation of PPARα significantly elevated carnitine palmitoyltransferase 1 (CPT-1), a key enzyme in fatty acid β-oxidation, and mitochondrial uncoupling protein 2 (UCP-2), thermogenic regulatory genes, in PCM-treated mice compared with those of HFD control mice. Moreover, PCM inhibits lipogenesis and cholesterol synthesis via suppression of sterol regulatory element binding protein-1 (SREBP-1) and SREBP-2 and its target genes such as acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Taken together, these effects were mediated through activation of AMPK. In the conclusion, PCM improved liver damage in HFD-fed mice and attenuated NAFLD by the activation of PPARα and the inhibition of SREBPs expression via AMPK-dependent pathways.


Author(s):  
U. O. Mudra

Background. Gout is still one of the major health problems despite significant advances in treatment in recent years. It has been proved that pathogenetic mechanisms of development and progression of gout are associated with nonalcoholic fatty liver disease. Complex pathogenic treatment of patients aimed at different parts of the pathological process has recently been supplemented with the enterosorbents. Objective. The aim of the research is to study the clinical features of gout with concomitant nonalcoholic fatty liver disease (NAFLD) and to evaluate the effect of carbon enterosorbent on its course. Methods. 123 patients were involved in the study. They were divided into 2 groups: group 1 included patients with gout without liver damage, and group 2 included patients with concomitant NAFLD. Each of these groups was divided into subgroups, in which the patients received carbon enterosorbent carboline plus basic treatment. The control group consisted of 30 healthy persons. Anamnesis, physical examination, uric acid (UA), C-reactive protein (CRP) content, erythrocyte sedimentation rate (ESR) in serum were determined. Gout activity was evaluated using the Gout Activity Score (GAS). Results. Basic treatment in combination with carbon enterosorbent contributed to faster cure of intoxication, pain and joint syndromes, as well as decrease of the inflammatory process activity. Conclusions. The course of gout in the patients with concomitant NAFLD is more severe. Adding of carbon granular enterosorbent carboline in the complex treatment of patients with gout with or without concomitant NAFLD in the exacerbation phase contributes to a faster cureing dynamics of clinical and laboratory manifestations of the disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Yu ◽  
Xi Xu ◽  
Jing Zhang ◽  
Xuan Xia ◽  
Fen Xu ◽  
...  

A glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LR) had been experimentally and clinically shown to ameliorate nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate the beneficial effect of LR on NAFLD in vivo and in vitro and its underlying molecular mechanism. The effects of LR were examined on the high-fat diet-induced in vivo model in mice and in vitro model of NAFLD in human HepG2 cells. Liver tissues and HepG2 cells were procured for measuring lipid metabolism, histological examination, and western blot analysis. LR administration significantly lowered the serum lipid profile and lipid disposition in vitro and in vivo because of the altered expression of enzymes on hepatic gluconeogenesis and lipid metabolism. Moreover, LR significantly decreased Src homology region 2 domain-containing phosphatase-1 (SHP1) and then increased the expression of phosphorylated-AMP-activated protein kinase (p-AMPK). However, the overexpression of SHP1 mediated by lentivirus vector reversed LR-induced improvement in lipid deposition. Moreover, SHP1 silencing could further increase the expression of p-AMPK to ameliorate lipid metabolism and relative lipogenic gene induced by LR. In addition, abrogation of AMPK by Compound C eliminated the protective effects of LR on lipid metabolism without changing the expression of SHP1. LR markedly prevented NAFLD through adjusting lipid metabolism via SHP1/AMPK signaling pathway.


2020 ◽  
Vol 106 (1) ◽  
pp. e34-e44
Author(s):  
Aya Bardugo ◽  
Cole D Bendor ◽  
Inbar Zucker ◽  
Miri Lutski ◽  
Tali Cukierman-Yaffe ◽  
...  

Abstract Context The long-term risk of type 2 diabetes in adolescents with nonalcoholic fatty liver disease (NAFLD) is unclear. Objective To assess type 2 diabetes risk among adolescents with NAFLD. Design and Setting A nationwide, population-based study of Israeli adolescents who were examined before military service during 1997–2011 and were followed until December 31, 2016. Participants A total of 1 025 796 normoglycemic adolescents were included. Interventions Biopsy or radiographic tests were prerequisite for NAFLD diagnosis. Data were linked to the Israeli National Diabetes Registry. Main Outcome Measures Type 2 diabetes incidence. Results During a mean follow-up of 13.3 years, 12 of 633 adolescents with NAFLD (1.9%; all with high body mass index [BMI] at baseline) were diagnosed with type 2 diabetes compared with 2917 (0.3%) adolescents without NAFLD. The hazard ratio (HR) for type 2 diabetes was 2.59 (95% confidence interval [CI], 1.47–4.58) for the NAFLD vs. the non-NAFLD group after adjustment for BMI and sociodemographic confounders. The elevated risk persisted in several sensitivity analyses. These included an analysis of persons without other metabolic comorbidities (adjusted HR, 2.75 [95% CI, 1.48-5.14]) and of persons with high BMI; and an analysis whose outcome was type 2 diabetes by age 30 years (adjusted HR, 2.14 [95% CI, 1.02-4.52]). The results remained significant when a sex-, birth year-, and BMI-matched control group was the reference (adjusted HR, 2.98 [95% CI, 1.54-5.74]). Conclusions Among normoglycemic adolescents, NAFLD was associated with an increased adjusted risk for type 2 diabetes, which may be apparent before age 30 years.


2019 ◽  
Vol 29 ◽  
pp. 99-113 ◽  
Author(s):  
Rajashree Rana ◽  
Andrew M. Shearer ◽  
Elizabeth K. Fletcher ◽  
Nga Nguyen ◽  
Srijoy Guha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document