scholarly journals Phyllodulcin, a Natural Sweetener, Regulates Obesity-Related Metabolic Changes and Fat Browning-Related Genes of Subcutaneous White Adipose Tissue in High-Fat Diet-Induced Obese Mice

Nutrients ◽  
2017 ◽  
Vol 9 (10) ◽  
pp. 1049 ◽  
Author(s):  
Eunju Kim ◽  
Soo-Min Lim ◽  
Min-Soo Kim ◽  
Sang-Ho Yoo ◽  
Yuri Kim
Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Viviana Sandoval ◽  
Antoni Femenias ◽  
Úrsula Martínez-Garza ◽  
Hèctor Sanz-Lamora ◽  
Juan Castagnini ◽  
...  

Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A–stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qishu Zhou ◽  
Chunyu Liang ◽  
Yafei Li ◽  
Yi Yan

Objective  To investigate the effect of one-time high-intensity intermittent exercise in white fat autophagy in obese rats and provide a theoretical basis of the molecular mechanism of exercise fat loss. Methods  Eighteen male 3-weeks-old rats were selected and divided into control group fed with normal diet (C), high-fat diet group fed with high fat diet (H). After 16 weeks, there were twelve obesity rats that divided into diet group (HS) and exercise group (HE). The other six control group rats of 19 weeks age were used as the standard (CS group). OE group did the high intensity intermittent exercise once. The CS group and the CS group were kept quietly. Three groups were taken subcutaneous white adipose tissue(S) and epididymal white adipose tissue (E) immediately after exercise. Mensurate the expression of LC3 gene in the tissue using the fluorescent quantitative PCR. Results 1. The expression of LC3 mRNA from white fat tissue was different to the tissues, which the expression of epididymal white adipose tissue of each group was higher than that in subcutaneous white adipose tissue (P <0.01). 2. Compared with CS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.01) and the expression of the subcutaneous white adipose tissue increased from HS group (P <0.05). 3. Compared with OS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.05) and the expression of subcutaneous white adipose tissue decreased from OS group. Conclusions The expression of LC3mRNA in epididymal white fat adipose tissue of rats was significantly higher than that of subcutaneous white fat. The changes of LC3mRNA expression of adipose tissue caused by high-fat diet have tissue differences. One-time high-intensity intermittent exercise can reduce the expression of LC3mRNA in fat tissue of obese rats. Its regulatory mechanism needs to be further studied.


2021 ◽  
Vol 9 (16) ◽  
Author(s):  
Babu R. Maharjan ◽  
Sergio F. Martinez‐Huenchullan ◽  
Susan V. Mclennan ◽  
Stephen M. Twigg ◽  
Paul F. Williams

Peptides ◽  
2014 ◽  
Vol 60 ◽  
pp. 56-62 ◽  
Author(s):  
João Marcus Oliveira Andrade ◽  
Fernanda de Oliveira Lemos ◽  
Simone da Fonseca Pires ◽  
Ruben Dario Sinisterra Millán ◽  
Frederico Barros de Sousa ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3325
Author(s):  
Min-Cheol Kang ◽  
Hyo-Geun Lee ◽  
Hyun-Soo Kim ◽  
Kyung-Mo Song ◽  
Yong-Gi Chun ◽  
...  

Obesity is a metabolic disease characterized by an increased risk of type 2 diabetes, hypertension, and cardiovascular disease. We have previously reported that compounds isolated from brown alga, Sargassum thunbergii (ST; Sargassum thunbergii (Mertens ex Roth) Kuntze), inhibit adipogenesis in 3T3-L1 cells. However, the in vivo anti-obesity effects of these compounds have not been previously reported. Therefore, the objective of this study was to determine the effects of ST on weight loss, fat accumulation, as well as risk factors for type 2 diabetes and cardiovascular disease in high-fat diet (HFD)-induced obese mice. ST treatment significantly decreased body weight and fat accumulation in HFD-induced obese mice, while reducing insulin and factors related to cardiovascular diseases (triglyceride and total cholesterol) in serum. ST-induced downregulation of PPARγ in white adipose tissue, and upregulation of the thermogenic genes, UCP-1 and UCP-3, in brown adipose tissue was also observed. In addition, oral administration of ST reduced the occurrence of fatty liver, as well as the amount of white adipose tissue in HFD mice. Cumulatively, these results suggest that ST exerts anti-obesity effects and may serve as a potential anti-obesity therapeutic agent.


2021 ◽  
Author(s):  
Saeed Daneshyar ◽  
Gholamreza Tavoosidana ◽  
Fatemeh Jalali-Moghim ◽  
Sadegh Amani-Shalamzari

Abstract Background. Some studies have established a relationship between obesity and the autophagic process in adipose tissue. This study aimed to investigate the effect of exercise training on the autophagic process in white adipose tissue (WAT) of high fat diet-induced obese mice.Methods and Results. C57BL/6 mice were assigned into three groups included: 1) Control 2), High-Fat Diet-induced Obesity (HFD-Ob), and 3) High-Fat Diet with Exercise Training (HFD-Ex). The subjects of HFD-Ob were fed a high-fat diet for 14 weeks. The mice of HFD-Ex had eight weeks of endurance training on a treadmill in addition to having the HFD. The Real-Time–PCR and western blot methods were used to measure the mRNA and protein levels of markers of the autophagic process. HFD caused an upregulation in the factors of the autophagosome formation, including ATG5 and ATG7, LC3, and the exercise training could augment the upregulation. Further, the training program prevented the change in LAMP2 expression (a marker of autophagolysosome), which being reduced by HFD. The lysosomal clearance factors (CTSB and CTSL) were raised in HFD-Ob and differently changed in HFD-Ex.Conclusion. HFD-induced obesity promoted the early and last steps of autophagy whereas defected the intermediate-step of it. Interestingly, the exercise training enhanced the early phase of autophagy, which being increased by HFD. Further, the training program could modify the rising effect of HFD on the last step of autophagy. It seems that a part of the protective effect of exercise training on obesity-related complications may be mediated by modulating the autophagic process in white adipose tissue.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2262 ◽  
Author(s):  
Kim ◽  
Jang ◽  
Lee

: Allium hookeri (AH) is widely consumed as a herbal medicine. It possesses biological activity against metabolic diseases. The objective of this study was to investigate effects of AH root water extract (AHR) on adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice. AHR inhibited lipid accumulation during adipocyte differentiation by downregulation of gene expression, such as hormone sensitive lipase (HSL), lipoprotein lipase (LPL) and an adipogenic gene, CCAAT/enhancer binding protein-α in 3T3-L1 preadipocytes. Oral administration of AHR significantly suppressed body weight gain, adipose tissue weight, serum leptin levels, and adipocyte cell size in HFD-induced obese mice. Moreover, AHR significantly decreased hepatic mRNA expression levels of cholesterol synthesis genes, such as 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding transcription factor (SREBP)-2, and low-density lipoprotein receptor, as well as fatty acid synthesis genes, such as SREBP-1c and fatty acid synthase. Serum triglyceride levels were also lowered by AHR, likely as a result of the upregulating gene involved in fatty acid β-oxidation, carnitine palmitoyltransferase 1a, in the liver. AHR treatment activated gene expression of peroxisome proliferator-activated receptor-γ, which might have promoted HSL and LPL-medicated lipolysis, thereby reducing white adipose tissue weight. In conclusion, AHR treatment can improve metabolic alterations induced by HFD in mice by modifying expression levels of genes involved in adipogenesis, lipogenesis, and lipolysis in the white adipose tissue and liver.


2020 ◽  
Vol 507 ◽  
pp. 110772
Author(s):  
Thamiris de Souza ◽  
Simone Vargas da Silva ◽  
Thaís Fonte-Faria ◽  
Vany Nascimento-Silva ◽  
Christina Barja-Fidalgo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document