scholarly journals PO-043 The Effects of One-Time High Intensity Intermittent Training on Expression of LC3 Gene in Rats’ White Adipose Tissue

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qishu Zhou ◽  
Chunyu Liang ◽  
Yafei Li ◽  
Yi Yan

Objective  To investigate the effect of one-time high-intensity intermittent exercise in white fat autophagy in obese rats and provide a theoretical basis of the molecular mechanism of exercise fat loss. Methods  Eighteen male 3-weeks-old rats were selected and divided into control group fed with normal diet (C), high-fat diet group fed with high fat diet (H). After 16 weeks, there were twelve obesity rats that divided into diet group (HS) and exercise group (HE). The other six control group rats of 19 weeks age were used as the standard (CS group). OE group did the high intensity intermittent exercise once. The CS group and the CS group were kept quietly. Three groups were taken subcutaneous white adipose tissue(S) and epididymal white adipose tissue (E) immediately after exercise. Mensurate the expression of LC3 gene in the tissue using the fluorescent quantitative PCR. Results 1. The expression of LC3 mRNA from white fat tissue was different to the tissues, which the expression of epididymal white adipose tissue of each group was higher than that in subcutaneous white adipose tissue (P <0.01). 2. Compared with CS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.01) and the expression of the subcutaneous white adipose tissue increased from HS group (P <0.05). 3. Compared with OS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.05) and the expression of subcutaneous white adipose tissue decreased from OS group. Conclusions The expression of LC3mRNA in epididymal white fat adipose tissue of rats was significantly higher than that of subcutaneous white fat. The changes of LC3mRNA expression of adipose tissue caused by high-fat diet have tissue differences. One-time high-intensity intermittent exercise can reduce the expression of LC3mRNA in fat tissue of obese rats. Its regulatory mechanism needs to be further studied.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Nobutomo Ikarashi ◽  
Takahiro Toda ◽  
Takehiro Okaniwa ◽  
Kiyomi Ito ◽  
Wataru Ochiai ◽  
...  

Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice. KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks. After the end of administration, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue. As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups. Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle. Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group. Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver. AP also increased mRNA expression of adiponectin and decreased expression of TNF-αin white adipose tissue. In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver. These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome.


Author(s):  
Akram Yaghoobi ◽  
Keihan Ghatreh Samani ◽  
Effat Farrokhi

Background: Bone morphogenetic protein7 (BMP7) and bone morphogenetic protein 8b (BMP8b) can induce browning of white adipose tissue. Objectives: The present study aimed to investigate the antioxidative effects of hydro-alcoholic extract of Nigella sativa on the repair of oxidative damage caused by a high-fat diet. Also, Bmp7 and Bmp8b gene expressions were investigated on white adipose tissue of the rats and then compared with metformin effects. Methods: Eighty rats were divided into two groups of prevention and treatment; then each set was divided into four sub-groups based on the administered diet (i.e., ordinary, fat, metformin, and extract of Nigella sativa). Lipid profile, paraoxonase1, malondialdehyde (MDA), HDL, and antioxidant capacity were measured in serum samples, and relative Bmp7 and Bmp8b gene expressions were calculated in white adipose tissue. Results: For both prevention and treatment sets, the weight of rats who received a high-fat diet decreased more compared to those in the normal diet group. The weight of rats who received metformin or nigella extract was also decreased compared to the high-fat diet group. MDA was also increased, but total antioxidant capacity and catalase were decreased in rats of the high-fat diet group compared to the normal diet group. MDA was also declined in nigella receiving rats, but liver PON1 activity, total antioxidant capacity, and catalase were increased, compared to the second group (P < 0.05). In the prevention and treatment set, Bmp8b gene expression was increased in the metformin and Nigella sativa groups, whereas it was decreased among those who received a high-fat diet. Bmp7 gene expression was decreased in the high-fat diet set, but metformin and Nigella sativa extract didn’t influence Bmp7 gene expression. Conclusions: This study demonstrated that Nigella sativa extract has a protective role against oxidative stress in a high-fat diet.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Viviana Sandoval ◽  
Antoni Femenias ◽  
Úrsula Martínez-Garza ◽  
Hèctor Sanz-Lamora ◽  
Juan Castagnini ◽  
...  

Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A–stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.


2017 ◽  
Author(s):  
Dan Liu ◽  
Xia Wang ◽  
Xinying Lin ◽  
Baihui Zhang ◽  
Shue Wang ◽  
...  

AbstractUnderstanding is emerging about microRNAs as mediators in the regulation of white adipose tissue (WAT) and obesity. The expression level of miR-199a in mice was investigated to test our hypothesis: miR-199a might be related to fat accumulation and try to find its target mRNA, which perhaps could propose strategies with a therapeutic potential affecting the fat storage. C57/BL6J mice were randomly assigned to either a control group or an obesity model group (n=10 in both groups). Control mice were fed a normal diet (fat: 10 kcal %) ad libitum for 12 weeks, and model mice were fed a high-fat diet (fat: 30 kcal %) ad libitum for 12 weeks to induce obesity. At the end of the experiment, body fat mass and the free fatty acids (FFAs) and triglycerides (TGs) in WAT were tested. Fat cell size was measured by hematoxylin-eosin (H&E) staining method. The fat mass of the model group was higher than that of the control group (P<0.05). In addition, the concentrations of the FFAs and TGs were higher (P<0.05) and the adipocyte count was lower (P<0.05) in the model group. We tested the expression levels of miR-199a and key adipogenic transcription factors, including peroxisome proliferator activated receptor gamma2 (PPARγ2), CCAAT/enhancer binding proteins alpha (C/EBPα), adipocyte fatty acid-binding protein (aP2), and sterol regulatory element binding protein-1c (SREBP-1c). Up-regulated expression of miR-199a was observed in model group. Increased levels of miR-199a was accompanied by high expression levels of SREBP-1c. We found that the 3’-UTR of SREBP-1c mRNA has a predicted binding site for miR-199a. Based on the current discoveries, we suggest that miR-199a may exert its action by binding to its target mRNA and cooperate with SREBP-1c to induce obesity. Therefore, if the predicted binding site is confirmed by further research, miR-199a may have therapeutic potential for obesity.AbbreviationsWAT, white adipose tissue; PPARγ2, peroxisome proliferator, activated receptor γ2; C/EBP αCCAAT/enhancer binding proteins α; aP2, adipocyte fatty acid-binding protein; SREBP-1c, sterol regulatory element binding protein-1c; HFD, high-fat diet.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Zeynep Goktas ◽  
Md Shahjalal Hossain Khan ◽  
Yujiao Zu ◽  
Lei Hao ◽  
Shu Wang

Abstract Objectives Many cell culture and animal studies have demonstrated that Trans-resveratrol (R) has the potential to induce beige cell formation and activity. Although human studies indicate that R can maintain metabolic health, evidence is inconclusive regarding its browning effectiveness mainly due to its low aqueous solubility and high hepatic metabolism in humans. To combat the shortcomings of R, we have successfully synthesized biocompatible and biodegradable R-encapsulated liposomes (Rlipo). We will directly inject Rlipo into inguinal white adipose tissue (iWAT) in this project. The purpose of this study to evaluate the anti-obesity effects of resveratrol-encapsulated liposomes in female APOE*3Leiden.CETP transgenic mice, which have human-like lipoprotein metabolism. Methods Rlipo was prepared using R and soy phosphatidylcholine (soy-PC) dissolved in ethanol. After mixing and drying with nitrogen, deionized water was added followed by a sonication step. Ultrafiltration was used to remove any unencapsulated R. The void liposomes (Vlipo) were prepared using only soy-PC. Female APOE*3Leiden.CETP mice (n = 40) were fed with a high fat diet (45% of calorie from fat) throughout the study. After 4 weeks of the high-fat diet administration, mice were randomly divided into 4 groups (n = 10) and received iWAT injections of Rlipo, Vlipo, free R and saline (control) once per week for 5 weeks. R concentration was 17.5 mg/kg body weight/week. Body weight and food intake were measured weekly. Body composition of mice was measured using an EchoMRITM every other week. Paired sample t-test and One-way ANOVA were used to analyze differences between means. Results After 5-weeks of treatment compared to baseline, fat percentage differences were 1.99 ± 0.93%, 1.85 ± 0.58%, 1.45 ± 0.67%, and 1.40 ± 0.68% in control, free R, Vlipo and Rlipo groups, respectively. Body weight and fat mass showed a similar trend of change. Although control group showed an increase in lean mass (0.25 ± 0.95 g), RLipo group showed a decrease (−0.14 ± 0.52 g). Food intake was similar among four groups. Conclusions Nanoencapsulation of R can enhance R's anti-obesity effects. However longer treatment time might be necessary to see more prominent results. Funding Sources NIH/NCCIH (Grant R15AT008733).


2021 ◽  
Vol 23 (3) ◽  
pp. 124-130
Author(s):  
Saeed Daneshyar ◽  
Mehdi Bahmani ◽  
Yazdan Fourotan

Background and aims: Beta-adrenergic signaling deficiency has been established to be related to obesity and related diseases. Beta3- adrenergic receptor (Adrb3) and beta-arrestin2 (Barr2) are pivotal agents in the beta-adrenergic-signaling pathway. This study aimed to investigate the preventive effect of aerobic training on dysregulation of Adrb3 and Barr2 gene expression that was induced by high-fat diet (HFD) in inguinal white adipose tissue of mice. Materials and Methods: Twenty-one C57BL/6 mice were assigned to three groups as follows: 1) control group (n=7), 2) high-fat diet-induced overweight (HFD-OW) (n=7), and 3) high-fat diet with aerobic training (HFD-AT) (n=7). The HFD-OW group were fed with a HFD for 12 weeks. The HFD-AT group had aerobic training for six weeks on a treadmill in addition to feeding with the HFD. The real-time polymerase chain reaction (PCR) method was used to measure the gene expression of Adrb3 and Barr2 in inguinal white adipose tissue. Results: The gene expression of Adrb3 did not significantly change between groups (P>0.05). However, the expression of Barr2 in HFD-OW group was significantly increased as compared to the control group (1.5-fold: P=0.001). Interestingly, the Barr2 expression in HFD-AT group was significantly lower compared with HFD-OW group (P=0.045). Conclusion: The results indicated that aerobic training could inhibit the upregulation of Barr2 induced by HFD. It seems that a portion of the preventive effect of aerobic training on the development of obesity may be mediated by inhibiting the Barr2 expression in adipose tissue.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2501
Author(s):  
Maihemuti Mijiti ◽  
Ryosuke Mori ◽  
Bingyu Huang ◽  
Kenichiro Tsukamoto ◽  
Keisuke Kiriyama ◽  
...  

Dietary protamine can ameliorate hyperlipidemia; however, the protamine-derived active peptide and its hypolipidemic mechanism of action are unclear. Here, we report the discovery of a novel anti-obesity and hypocholesterolemic peptide, RPR (Arg-Pro-Arg), derived from protamine in mice fed a high-fat diet for 50 days. Serum cholesterol levels were significantly lower in the protamine and RPR groups than in the control group. White adipose tissue weight was significantly decreased in the protamine and RPR groups. The fecal excretion of cholesterol and bile acid was significantly higher in the protamine and RPR groups than in the control group. We also observed a significant decrease in the expression of hepatic SCD1, SREBP1, and adipocyte FAS mRNA, and significantly increased expression of hepatic PPARα and adipocyte PPARγ1 mRNA in the protamine group. These findings demonstrate that the anti-obesity effects of protamine are linked to the upregulation of adipocyte PPARγ1 and hepatic PPARα and the downregulation of hepatic SCD1 via SREBP1 and adipocyte FAS. RPR derived from protamine has a crucial role in the anti-obesity action of protamine by evaluating the effective dose of adipose tissue weight loss.


2021 ◽  
pp. 153537022110060
Author(s):  
Yue Chen ◽  
Jie Ding ◽  
Yufei Zhao ◽  
Shenghong Ju ◽  
Hui Mao ◽  
...  

This study aimed to track and evaluate the effect of low-dose irisin on the browning of white adipose tissue (WAT) in mice using magnetic resonance imaging (MRI) noninvasively in vivo. Mature white adipocytes extracted from mice were cultured, induced and characterized before being treated by irisin. The volume and fat fraction of WAT were quantified using MRI in normal chow diet and high fat mice after injection of irisin. The browning of cultured white adipocytes and WAT in mice were validated by immunohistochemistry and western blotting for uncoupling protein 1 (UCP1) and deiodinase type II (DIO2). The serum indexes were examined with high fat diet after irisin intervention. UCP1 and DIO2 in adipocytes showed increases responding to the irisin treatment. The size of white adipocytes in mice receiving irisin intervention was reduced. MRI measured volumes and fat fraction of WAT were significantly lower after Irisin treatment. Blood glucose and cholesterol levels were reduced in high fat diet mice after irisin treatment. Irisin intervention exerted browning of WAT, resulting reduction of volume and fat fraction of WAT as measured by MRI. Furthermore, it improved the condition of mice with diet-induced obesity and related metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document