scholarly journals Nonequilibrium Pion Distribution within the Zubarev Approach

Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 380-393
Author(s):  
David Blaschke ◽  
Gerd Röpke ◽  
Dmitry N. Voskresensky ◽  
Vladimir G. Morozov

We discuss how the non-equilibrium process of pion production within the Zubarev approach of the non-equilibrium statistical operator leads to a theoretical foundation for the appearance of a non-equilibrium pion chemical potential for the pion distribution function for which there is experimental evidence in experiments at the CERN LHC.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyin Xi ◽  
Ronald S. Lankone ◽  
Li-Piin Sung ◽  
Yun Liu

AbstractBicontinuous porous structures through colloidal assembly realized by non-equilibrium process is crucial to various applications, including water treatment, catalysis and energy storage. However, as non-equilibrium structures are process-dependent, it is very challenging to simultaneously achieve reversibility, reproducibility, scalability, and tunability over material structures and properties. Here, a novel solvent segregation driven gel (SeedGel) is proposed and demonstrated to arrest bicontinuous structures with excellent thermal structural reversibility and reproducibility, tunable domain size, adjustable gel transition temperature, and amazing optical properties. It is achieved by trapping nanoparticles into one of the solvent domains upon the phase separation of the binary solvent. Due to the universality of the solvent driven particle phase separation, SeedGel is thus potentially a generic method for a wide range of colloidal systems.


2015 ◽  
Vol 220-221 ◽  
pp. 917-921 ◽  
Author(s):  
Mykola Chausov ◽  
Pavlo Maruschak ◽  
Olegas Prentkovskis ◽  
Andriy Pylypenko ◽  
Valentyn Berezin ◽  
...  

Using an original experimental methodology and software for contactless investigation into strains applying the method of digital image correlation, conditions for DNP realization in the test setup with pre-set rigidity have been found. Strain velocities have been determined to be equal to 2...10 s–1 in the processes of forming and developing a dissipative structure of heat resistant steel under the DNP (dynamic non-equilibrium process).


2021 ◽  
Author(s):  
Grisell Díaz Leines ◽  
Angelos Michaelides ◽  
Jutta Rogal

Gaining fundamental understanding of crystal nucleation processes in metal alloys is crucial for the development and design of high-performance materials with targeted properties. Yet, crystallizationis a complex non-equilibrium process and,...


2021 ◽  
Vol 29 (1) ◽  
pp. 21-28
Author(s):  
A. I. Sokolovsky ◽  
S. A. Sokolovsky

On the base of the Boltzmann kinetic equation, hydrodynamics of a dilute gas in the presence of the strong external potential field is investigated. First of all, a gravitational field is meant, because the consistent development of hydrodynamics in this environment is of great practical importance. In the present paper it is assumed that it is possible to neglect the influence of the field on the particle collisions. The study is based on the Chapman–Enskog method in a Bogolyubov’s formulation, which uses the idea of the functional hypothesis. Consideration is limited to steady gas states, which are subjected to a simpler experimental study. Chemical potential μ0 of the gas at the point where the external field has zero value and its temperature T are selected as the reduced description parameters of the system. In equilibrium, in the presence of the field, these values do not depend on the coordinates. It is assumed that in thehydrodynamic states T and μ0 are weakly dependent on the coordinates and therefore their gradients, considered on the scale of the free path length of the gas, are small. The kinetic equation, accounting for the functional hypothesis, gives an integro-differential equation for a gas distribution function at the hydrodynamic stage of evolution. This equation is solved in perturbation theory in gradients of T and μ0. The main approximation is analyzed for possibility of the system to be in a local equilibrium by means of comparing it with an equilibrium distribution function. Next, the distribution function is calculated in the first approximation in gradients and it is expressed in terms of solutions Ap , Bp of some first kind integral Fredholm equations. An approach to the approximate solution of these equations is discussed. The found distribution function is used to calculate the fluxes of the number of gas particles and their energy in the first order in gradients T and μ0 . Kinetic coefficients, which describe the structure of these fluxes, are introduced. Matrix elements of the operator of the linearized collision integral (integral brackets) are used for their research. It is a question of validity of the principle of symmetry of kinetic coefficients and definition of their signs.


Author(s):  
Yosuke Shimura ◽  
Masaki Okado ◽  
Tokimune Motofuji ◽  
Hirokazu TATSUOKA

Abstract Si1-xSnx and Si1-x-yGexSny polycrystalline thin layers were grown using Sn nanodots as crystal nuclei. Si1-xSnx crystallization occurred around Sn nanodots, and the substitutional Sn content was estimated as high as 1.5%. In the case of the poly-Si1-x-yGexSny, Ge and Si were deposited simultaneously on the Sn nanodots, however, Ge was preferentially incorporated into the Sn nanodots, resulting in the formation of the poly-Si1-x-yGexSny with amorphous Si residue. It was found that the poly-Si1-xSnx formed by the Sn nanodots mediated formation can be used as the new virtual substrate to be alloyed with Ge, namely the 2step formation process consisting of poly-Si1-xSnx crystallization and Ge alloying with the Si1-xSnx is the effective formation process for the poly-Si1-x-yGexSny formation. This non-equilibrium process with achieving crystallization resulted in the substitutional Si and Sn content in the as-grown poly-Si1-x-yGexSny as high as 19.4% and 3.4%, respectively.


Sign in / Sign up

Export Citation Format

Share Document