scholarly journals First Molecular Detection of Babesia gibsoni in Stray Dogs from Thailand

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 639
Author(s):  
Thom Do ◽  
Ruttayaporn Ngasaman ◽  
Vannarat Saechan ◽  
Opal Pitaksakulrat ◽  
Mingming Liu ◽  
...  

In southern Thailand, the increasingly growing population of stray dogs is a concern to public health and environmental safety because of the lack of medical attention and control. More importantly, these animals are considered reservoirs for many zoonotic pathogens. The objective of this study was to molecularly detect canine vector-borne pathogens, and to perform genetic characterization of Babesia gibsoni present in stray dogs from southern Thailand. Blood samples were collected from 174 stray dogs in two provinces (Songkhla and Narathiwat) in southern Thailand. PCR analyses were executed using specific primers based on the Babesia spp. 18S rRNA gene, Babesia gibsoni Internal transcribed spacer 1 (ITS1) region, Ehrlichia canis citrate synthase (gltA) gene, Hepatozoon spp. 18S rRNA gene and Anaplasma platys heat shock protein (groEL) gene. The most common canine vector-borne pathogen found infecting stray dogs in this study was Hepatozoon canis (24.7%) followed by A. platys (14.9%), Babesia vogeli (8.0%), B. gibsoni (6.3%), and E. canis (1.72%). Concurrent infection with more than one pathogen occurred in 72 cases. Phylogenetic analysis based on the ITS1 region and 18S rRNA gene revealed that the B. gibsoni isolates from this study shared a large proportion of their identities with each other and with other reported B. gibsoni genotypes from Asia. This study highlights the molecular detection of B. gibsoni in dogs in Thailand for the first time and presents the genetic characterization by sequencing the ITS1 region and 18S rRNA gene of B. gibsoni from Thailand. Follow-up studies are needed to elucidate the origin, distribution, and vectors of B. gibsoni parasites circulating in dogs in Thailand, as well as to determine to what extent dogs are important reservoir hosts for zoonotic canine vector-borne disease infection in the studied area.

2021 ◽  
Author(s):  
Erin M Stayton ◽  
Megan Lineberry ◽  
Jennifer Thomas ◽  
Tina Bass ◽  
Kelly Allen ◽  
...  

Abstract Background: Babesia species are intraerythrocytic Apicomplexan parasites that infect a wide range of vertebrate hosts. These pathogens are typically transmitted either by tick vectors or by direct blood-to-blood contact, and may cause life-threatening clinical disease such as thrombocytopenia, hemolytic anemia, and acute renal failure in canine hosts. While Babesia vogeli and Babesia gibsoni infections have both been reported in Oklahoma, reports of B. conradae infections have been limited to California. Methods: Whole blood samples were collected in EDTA tubes from all dogs in four separate kennels in Oklahoma. DNA was extracted from each blood sample and a nested PCR was performed using general Apicomplexan primers for the partial 18S rRNA gene. PCR products were electrophoresed in agarose matrix and appropriately sized amplicons were sequenced. Sequences were compared to reference 18S rRNA sequences available in GenBank, and samples with >98% homology to B. conradae (GenBank MK256976) were considered positive. B. conradae positive dogs were then treated with atovaquone (13.5 mg/kg TID) and azithromycin (10 mg/kg SID) for 10 days and retested at 30 and 60 days post treatment by PCR. Results: Fifteen of 40 dogs tested positive for B. conradae with 98–100% sequence homology to B. conradae from California. All positive cases were coyote-hunting Greyhounds. Treatment of clinically ill dogs with atovaquone and azithromycin resulted in complete clinical recovery in clinically ill dogs and all treated dogs had negative follow-up PCR at 30 and 60 days post treatment. Conclusions: Collectively, this study (i) documents the occurrence of B. conradae in Oklahoma, (ii) highlights this pathogen as a differential to be considered when clinical signs are present, and (iii) supports the use of atovaquone and azithromycin as effective treatment in these cases.


Parasitology ◽  
2011 ◽  
Vol 138 (11) ◽  
pp. 1417-1422 ◽  
Author(s):  
E. M. LABES ◽  
N. WIJAYANTI ◽  
P. DEPLAZES ◽  
A. MATHIS

SUMMARYOrangutans (Pongo spp.), Asia's only great apes, are threatened in their survival due to habitat loss, hunting and infections. Nematodes of the genus Strongyloides may represent a severe cause of death in wild and captive individuals. In order to better understand which Strongyloides species/subspecies infect orangutans under different conditions, larvae were isolated from fecal material collected in Indonesia from 9 captive, 2 semi-captive and 9 wild individuals, 18 captive groups of Bornean orangutans and from 1 human working with wild orangutans. Genotyping was done at the genomic rDNA locus (part of the 18S rRNA gene and internal transcribed spacer 1, ITS1) by sequencing amplicons. Thirty isolates, including the one from the human, could be identified as S. fuelleborni fuelleborni with 18S rRNA gene identities of 98·5–100%, with a corresponding published sequence. The ITS1 sequences could be determined for 17 of these isolates revealing a huge variability and 2 main clusters without obvious pattern with regard to attributes of the hosts. The ITS1 amplicons of 2 isolates were cloned and sequenced, revealing considerable variability indicative of mixed infections. One isolate from a captive individual was identified as S. stercoralis (18S rRNA) and showed 99% identity (ITS1) with S. stercoralis sequences from geographically distinct locations and host species. The findings are significant with regard to the zoonotic nature of these parasites and might contribute to the conservation of remaining orangutan populations.


2020 ◽  
Vol 44 ((E0)) ◽  
pp. 34-41
Author(s):  
Naseir M. Badawi ◽  
Afaf A. Yousif

This study aimed to detect Babesia gibsoni (B. gibsoni) in dogs of different ages, sex and breeds in Baghdad province by microscopic and molecular investigations using polymerase chain reaction (PCR), sequencing, and phylogenetic analyses. The present study was investigated B. gibsoni in 310 blood samples of dogs for the period December 2018 to September 2019 in Baghdad province, Iraq. The molecular study was carried out by using universal primers of Babesia spp. (PIRO-A and PIRO-B) and specific primers of B. gibsoni (BAGIF and BAGIR) products size of 410 bp and 488 bp fragments of 18S rRNA gene respectively. The clinical signs revealed higher percentage and specific clinical signs of B. gibsoni as depression, anorexia, fever, pale mucus membrane, and ticks infestation, however icterus, and dead were low in which only occurred in two dogs out of infected dogs. The PCR assay and microscopic diagnosis revealed the infection rate of B. gibsoni 9 out of 310 (2.9%) in dogs. The sequence data analyses of nine DNA products were 98-100% similar to sequences of 18S rRNA gene of B. gibsoni data available in Gene bank. According to breed, age, and sex, the results revealed a significantly high-risk factor of infection in Husky dogs; B. gibsoni detected in females which was increased non-significantly than males; while the highest occurrence of disease was in young dogs aged three years or less in addition to the above, the infection rate of B. gibsoni was high in the spring season. In conclusion, this study was considered the first molecular record of B. gibsoni in Baghdad, Iraq documented no differences in diagnosis by blood smear and conventional PCR to amplify of 18S rRNA gene and partial sequencing of B. gibsoni with low-cost method and easily done.


Parasitology ◽  
2010 ◽  
Vol 137 (6) ◽  
pp. 939-946 ◽  
Author(s):  
TIAGO M. MARTINS ◽  
LUÍS NEVES ◽  
OLÍVIA C. PEDRO ◽  
JOSÉ M. FAFETINE ◽  
VIRGÍLIO E. DO ROSÁRIO ◽  
...  

SUMMARYMolecular detection ofBabesiaspecies in apparently healthy cattle within an endemic region was carried out in order to determine the prevalence of carriers and the geographical distribution ofBabesia bigeminaandBabesia bovisin Maputo Province, Mozambique. Samples from 477 animals at 5 localities were analysed using 2 techniques, the semi-nested hot-start PCR and the reverse line blot (RLB) assay. With the semi-nested hot-start PCR, detection ofB. bigeminaranged between 30% and 89%, and ofB. bovisbetween 27% and 83%. The RLB assay was comparatively less sensitive in this study and detection ofB. bovisranged from 0% to 17%, andB. bigeminawas not detected at all by this technique. Analysis of new sequences of the 18S rRNA gene revealed that the currentB. bigeminaRLB probe is not specific for the identification of isolates in Mozambique. The RLB assay, however, resulted in the detection of 8 other haemoparasite species belonging to the generaBabesia,Theileria,AnaplasmaandEhrlichia. 18S rRNA gene sequences from theTheileriaspp. were identified, and a phylogenic tree constructed with these sequences yielded a heterogeneousT. mutans-like group. In conclusion, infection withB. bigeminaandB. bovisis endemic in Maputo Province, but rates of transmission vary. Furthermore, mixed infections with the haemoparasites responsible for several tick-borne diseases in cattle are common in Mozambique.


Author(s):  
Prabhakar Shil ◽  
Jayesh B. Solanki ◽  
Niranjan Kumar ◽  
Dharmesh C. Patel ◽  
Nabanita Thakuria

Background: The study was aimed at molecular detection and assessment of important biomarkers in the natural cases of canine babesiosis. Methods: Blood samples of 239 dogs were examined in PCR by targeting 18S rRNA gene. Hematobiochemical, oxidant-antioxidant and plasma cortisol parameters were estimated in the dogs on the day of presentation. Result: The 18S rRNA gene sequence showed 100% homology with Babesia canis vogeli and phylogram formed a tight cluster of B. canis vogeli originated from India/other countries. Higher prevalence rate (P less than 0.05) was noted in the PCR (7.95%) than the cytological technique (3.76%). Hemogram of infected dogs showed decrease (P less than 0.05) in the mean value of hemoglobin, RBC, WBC, HCT, whereas an increase in MCHC, lymphocytes, eosinophils, monocytes and thrombocytes. The ALT (49.29±1.53 U/L), AST (48.33±2.93 U/L), total protein (10.56±0.60 g/dL), creatinine (1.41±0.10 mg/dL) and urea (19.32±0.97 mg/dL) showed significant (P less than 0.005) increase, whereas decrease in the levels of serum glucose (82.76±2.78 mg/dL) in the infected dogs. Activity of MDA and SOD was significantly (P less than 0.01) increased (7.50±7.08 nmole/µL blood) and decreased (0.015±3.91 nmole/µL blood) in the diseased dogs, respectively. Plasma cortisol concentration was 11.10±7.84 nmol/L and 2.77±5.78 nmol/L (P less than 0.01) in the infected and uninfected dogs, respectively.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Claire Y. T. Wang ◽  
Emma L. Ballard ◽  
Zuleima Pava ◽  
Louise Marquart ◽  
Jane Gaydon ◽  
...  

Abstract Background Volunteer infection studies have become a standard model for evaluating drug efficacy against Plasmodium infections. Molecular techniques such as qPCR are used in these studies due to their ability to provide robust and accurate estimates of parasitaemia at increased sensitivity compared to microscopy. The validity and reliability of assays need to be ensured when used to evaluate the efficacy of candidate drugs in clinical trials. Methods A previously described 18S rRNA gene qPCR assay for quantifying Plasmodium falciparum in blood samples was evaluated. Assay performance characteristics including analytical sensitivity, reportable range, precision, accuracy and specificity were assessed using experimental data and data compiled from phase 1 volunteer infection studies conducted between 2013 and 2019. Guidelines for validation of laboratory-developed molecular assays were followed. Results The reportable range was 1.50 to 6.50 log10 parasites/mL with a limit of detection of 2.045 log10 parasites/mL of whole blood based on a parasite diluted standard series over this range. The assay was highly reproducible with minimal intra-assay (SD = 0.456 quantification cycle (Cq) units [0.137 log10 parasites/mL] over 21 replicates) and inter-assay (SD = 0.604 Cq units [0.182 log10 parasites/mL] over 786 qPCR runs) variability. Through an external quality assurance program, the QIMR assay was shown to generate accurate results (quantitative bias + 0.019 log10 parasites/mL against nominal values). Specificity was 100% after assessing 164 parasite-free human blood samples. Conclusions The 18S rRNA gene qPCR assay is specific and highly reproducible and can provide reliable and accurate parasite quantification. The assay is considered fit for use in evaluating drug efficacy in malaria clinical trials.


Polar Biology ◽  
2021 ◽  
Author(s):  
Eleanor E. Jackson ◽  
Ian Hawes ◽  
Anne D. Jungblut

AbstractThe undulating ice of the McMurdo Ice Shelf, Southern Victoria Land, supports one of the largest networks of ice-based, multiyear meltwater pond habitats in Antarctica, where microbial mats are abundant and contribute most of the biomass and biodiversity. We used 16S rRNA and 18S rRNA gene high-throughput sequencing to compare variance of the community structure in microbial mats within and between ponds with different salinities and pH. Proteobacteria and Cyanobacteria were the most abundant phyla, and composition at OTU level was highly specific for the meltwater ponds with strong community sorting along the salinity gradient. Our study provides the first detailed evaluation of eukaryote communities for the McMurdo Ice Shelf using the 18S rRNA gene. They were dominated by Ochrophyta, Chlorophyta and Ciliophora, consistent with previous microscopic analyses, but many OTUs belonging to less well-described heterotrophic protists from Antarctic ice shelves were also identified including Amoebozoa, Rhizaria and Labyrinthulea. Comparison of 16S and 18S rRNA gene communities showed that the Eukaryotes had lower richness and greater similarity between ponds in comparison with Bacteria and Archaea communities on the McMurdo Ice shelf. While there was a weak correlation between community dissimilarity and geographic distance, the congruity of microbial assemblages within ponds, especially for Bacteria and Archaea, implies strong habitat filtering in ice shelf meltwater pond ecosystems, especially due to salinity. These findings help to understand processes that are important in sustaining biodiversity and the impact of climate change on ice-based aquatic habitats in Antarctica.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsuyoshi Watanabe ◽  
Satoshi Nagai ◽  
Yoko Kawakami ◽  
Taiga Asakura ◽  
Jun Kikuchi ◽  
...  

AbstractEel larvae apparently feed on marine snow, but many aspects of their feeding ecology remain unknown. The eukaryotic 18S rRNA gene sequence compositions in the gut contents of four taxa of anguilliform eel larvae were compared with the sequence compositions of vertically sampled seawater particulate organic matter (POM) in the oligotrophic western North Pacific Ocean. Both gut contents and POM were mainly composed of dinoflagellates as well as other phytoplankton (cryptophytes and diatoms) and zooplankton (ciliophoran and copepod) sequences. Gut contents also contained cryptophyte and ciliophoran genera and a few other taxa. Dinoflagellates (family Gymnodiniaceae) may be an important food source and these phytoplankton were predominant in gut contents and POM as evidenced by DNA analysis and phytoplankton cell counting. The compositions of the gut contents were not specific to the species of eel larvae or the different sampling areas, and they were most similar to POM at the chlorophyll maximum in the upper part of the thermocline (mean depth: 112 m). Our results are consistent with eel larvae feeding on marine snow at a low trophic level, and feeding may frequently occur in the chlorophyll maximum in the western North Pacific.


2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


Sign in / Sign up

Export Citation Format

Share Document