scholarly journals The Effect of Impaired Polyamine Transport on Pneumococcal Transcriptome

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1322
Author(s):  
Mary F. Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Edwin Swiatlo ◽  
Bindu Nanduri

Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genome plasticity, antibiotic resistance, and limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions to limit the spread of this pathogen. Pathogenic mechanisms that allow successful adaption and persistence in the host could be potential innovative therapeutic targets. Polyamines are ubiquitous polycationic molecules that regulate many cellular processes. We previously reported that deletion of polyamine transport operon potABCD, which encodes a putrescine/spermidine transporter (∆potABCD), resulted in an unencapsulated attenuated phenotype. Here, we characterize the transcriptome, metabolome, and stress responses of polyamine transport-deficient S. pneumoniae. Compared with the wild-type strain, the expression of genes involved in oxidative stress responses and the nucleotide sugar metabolism was reduced, while expression of genes involved in the Leloir, tagatose, and pentose phosphate pathways was higher in ΔpotABCD. A metabolic shift towards the pentose phosphate pathway will limit the synthesis of precursors of capsule polysaccharides. Metabolomics results show reduced levels of glutathione and pyruvate in the mutant. Our results also show that the potABCD operon protects pneumococci against hydrogen peroxide and nitrosative stress. Our findings demonstrate the importance of polyamine transport in pneumococcal physiology that could impact in vivo fitness. Thus, polyamine transport in pneumococci represents a novel target for therapeutic interventions.

2021 ◽  
Author(s):  
Mary F. Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Edwin Swiatlo ◽  
Bindu Nanduri

Abstract Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genetic plasticity, antibiotic resistance, limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions. Pathogenic systems that allow successful adaption and persistence in the host could be potential innovative targets for mediations. Polyamines are ubiquitous polycationic molecules and regulate many cellular processes. We previously reported that deletion of potABCD, an operon that encodes a putrescine/spermidine transporter (∆potABCD), resulted in an un-encapsulated attenuated phenotype. Here we characterize the transcriptome, metabolome, and stress responses of S. pneumoniae that is dependent on the polyamine transporter. Expression of genes involved in oxidative stress responses and the central metabolism was reduced while that of genes involved in the Leloir, tagatose, and pentose phosphate pathways was increased in ΔpotABCD. Downregulation of genes of the central metabolism will reduce production of precursors of capsule polysaccharides. Metabolomics results show reduced glutathione and pyruvate levels in the mutant. We also show that the potABCD operon protects pneumococci against hydrogen peroxide and nitrosative stress. These results show the importance of the potABCD operon and polyamine transport in pneumococcal physiology and fitness that represents a novel target for therapeutic interventions.


Author(s):  
Marietta Zita Poles ◽  
László Juhász ◽  
Mihály Boros

AbstractMammalian methanogenesis is regarded as an indicator of carbohydrate fermentation by anaerobic gastrointestinal flora. Once generated by microbes or released by a non-bacterial process, methane is generally considered to be biologically inactive. However, recent studies have provided evidence for methane bioactivity in various in vivo settings. The administration of methane either in gas form or solutions has been shown to have anti-inflammatory and neuroprotective effects in an array of experimental conditions, such as ischemia/reperfusion, endotoxemia and sepsis. It has also been demonstrated that exogenous methane influences the key regulatory mechanisms and cellular signalling pathways involved in oxidative and nitrosative stress responses. This review offers an insight into the latest findings on the multi-faceted organ protective activity of exogenous methane treatments with special emphasis on its versatile effects demonstrated in sepsis models.


Author(s):  
László Juhász ◽  
Szabolcs Péter Tallósy ◽  
Anna Nászai ◽  
Gabriella Varga ◽  
Dániel Érces ◽  
...  

A number of studies have demonstrated explicit bioactivity for exogenous methane (CH4), even though it is conventionally considered as physiologically inert. Other reports cited in this review have demonstrated that inhaled, normoxic air-CH4 mixtures can modulate the in vivo pathways involved in oxidative and nitrosative stress responses and key events of mitochondrial respiration and apoptosis. The overview is divided into two parts, the first being devoted to a brief review of the effects of biologically important gases in the context of hypoxia, while the second part deals with CH4 bioactivity. Finally, the consequence of exogenous, normoxic CH4 administration is discussed under experimental hypoxia- or ischaemia-linked conditions and in interactions between CH4 and other biological gases, with a special emphasis on its versatile effects demonstrated in pulmonary pathologies.


2021 ◽  
Author(s):  
Weikang Cai ◽  
Xuemei Zhang ◽  
Thiago M. Batista ◽  
Rubén García-Martín ◽  
Samir Softic ◽  
...  

The brain is now recognized as an insulin sensitive tissue, however, the role of changing insulin concentrations in the peripheral circulation on gene expression in the brain is largely unknown. Here we perform hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 hours. We show that increases in peripheral insulin within the physiological range regulate expression of a broad network of gene expression in the brain compared with saline-infused controls. Insulin regulates distinct pathways in the hypothalamus, hippocampus and nucleus accumbens. Insulin shows its most robust effect in the hypothalamus and regulates multiple genes involved in neurotransmission, including up-regulating expression of multiple subunits of GABA-A receptors, Na<sup>+</sup> and K<sup>+</sup> channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the hypothalamus, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Brittany Dewdney ◽  
Mohammed Alanazy ◽  
Rhys Gillman ◽  
Sarah Walker ◽  
Miriam Wankell ◽  
...  

Abstract Hepatocellular carcinoma is rapidly becoming one of the leading causes of cancer-related deaths, largely due to the increasing incidence of non-alcoholic fatty liver disease. This in part may be attributed to Westernised diets high in fructose sugar. While many studies have shown the effects of fructose on inducing metabolic-related liver diseases, little research has investigated the effects of fructose sugar on liver cancer metabolism. The present study aimed to examine the metabolic effects of fructose on hepatocellular carcinoma growth in vitro and in vivo. Fructose sugar was found to reduce cell growth in vitro, and caused alterations in the expression of enzymes involved in the serine-glycine synthesis and pentose phosphate pathways. These biosynthesis pathways are highly active in cancer cells and they utilise glycolytic by-products to produce energy and nucleotides for growth. Hence, the study further investigated the efficacy of two novel drugs that inhibit these pathways, namely NCT-503 and Physcion. The study is the first to show that the combination treatment of NCT-503 and Physcion substantially inhibited hepatocellular carcinoma growth in vitro and in vivo. The combination of fructose diet and metabolism-inhibiting drugs may provide a unique metabolic environment that warrants further investigation in targeting hepatocellular carcinoma.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Haeri Jeong ◽  
Younhee Kim ◽  
Heung-Shick Lee

Abstract Background Corynebacterium glutamicum is used in the industrial production of amino acids and nucleotides. During the course of fermentation, C. glutamicum cells face various stresses and employ multiple regulatory genes to cope with the oxidative stress. The osnR gene plays a negative regulatory role in redox-dependent oxidative-stress responses, but the underlying mechanism is not known yet. Results Overexpression of the osnR gene in C. glutamicum affected the expression of genes involved in the mycothiol metabolism. ChIP-seq analysis revealed that OsnR binds to the promoter region of multiple genes, including osnR and cg0026, which seems to function in the membrane-associated redox metabolism. Studies on the role of the osnR gene involving in vitro assays employing purified OsnR proteins and in vivo physiological analyses have identified that OsnR inhibits the transcription of its own gene. Further, oxidant diamide stimulates OsnR-binding to the promoter region of the osnR gene. The genes affected by the overexpression of osnR have been found to be under the control of σH. In the osnR-overexpressing strain, the transcription of sigH is significantly decreased and the stimulation of sigH transcription by external stress is lost, suggesting that osnR and sigH form an intimate regulatory network. Conclusions Our study suggests that OsnR not only functions as a transcriptional repressor of its own gene and of those involved in redox-dependent stress responses but also participates in the global transcriptional regulation by controlling the transcription of other master regulators, such as sigH.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Pragati Sabberwal ◽  
Lucy Chapman ◽  
Mathew Clement ◽  
Ceri Fielding ◽  
David Thomas ◽  
...  

Human cytomegalovirus (HCMV) is a pathogenic beta-herpesvirus that establishes a lifelong infection in hosts. It causes significant morbidity and mortality in the immunocompromised and is associated with a range of birth defects following congenital infection. Current therapeutic approaches that target key viral proteins are toxic and antiviral drug resistance is common. Thus, targeting host genes and cellular pathways essential for HCMV infection offers an alternative strategy for the development of antivirals. Here we show that host oxidative/nitrosative stress responses to CMV are critical for virus replication. Oxidative/nitrosative stress occurs due to accumulation of reactive oxygen/nitrogen species (ROS/RNS). Using a range of ROS/RNS scavengers, we identified that peroxynitrite, a powerful oxidant and nitrating agent, dramatically promoted virus replication in both in vitro and in vivo models of CMV infection. HCMV rapidly induced production of intracellular peroxynitrite upon infection. Inhibition of peroxynitrite within the first 24 hours alleviates efficient HCMV infection in both cell-free and cell-associated infection systems, indicating that peroxynitrite may influence pathways necessary for HCMV entry and/or replication. Furthermore, peroxynitrite inhibition also inhibited HCMV reactivation from latency. Interestingly, the neurotransmitter and naturally-occurring peroxynitrite antagonist 5-hydroxytryptamine, commonly known as serotonin, also impinged on HCMV-induced peroxynitrite production and exhibited anti-HCMV activity. Thus, overall, our study demonstrates a novel role for intracellular peroxynitrite in CMV pathogenesis and implies that peroxynitrite could be targeted as a novel approach to inhibiting CMV infection.


2021 ◽  
Author(s):  
Weikang Cai ◽  
Xuemei Zhang ◽  
Thiago M. Batista ◽  
Rubén García-Martín ◽  
Samir Softic ◽  
...  

The brain is now recognized as an insulin sensitive tissue, however, the role of changing insulin concentrations in the peripheral circulation on gene expression in the brain is largely unknown. Here we perform hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 hours. We show that increases in peripheral insulin within the physiological range regulate expression of a broad network of gene expression in the brain compared with saline-infused controls. Insulin regulates distinct pathways in the hypothalamus, hippocampus and nucleus accumbens. Insulin shows its most robust effect in the hypothalamus and regulates multiple genes involved in neurotransmission, including up-regulating expression of multiple subunits of GABA-A receptors, Na<sup>+</sup> and K<sup>+</sup> channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the hypothalamus, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alberto Valdés ◽  
Francisco J. Lucio-Cazaña ◽  
María Castro-Puyana ◽  
Coral García-Pastor ◽  
Oliver Fiehn ◽  
...  

AbstractDiabetic nephropathy (DN) is the leading cause of chronic kidney disease. Although hyperglycaemia has been determined as the most important risk factor, hypoxia also plays a relevant role in the development of this disease. In this work, a comprehensive metabolomic study of the response of HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells, to hyperglycemic, hypoxic diabetic-like milieu has been performed. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O2) were compared to cells in control conditions (5.5 mM glucose/18.6% O2) at 48 h. The combination of advanced metabolomic platforms (GC-TOF MS, HILIC- and CSH-QExactive MS/MS), freely available metabolite annotation tools, novel databases and libraries, and stringent cut-off filters allowed the annotation of 733 metabolites intracellularly and 290 compounds in the extracellular medium. Advanced bioinformatics and statistical tools demonstrated that several pathways were significantly altered, including carbohydrate and pentose phosphate pathways, as well as arginine and proline metabolism. Other affected metabolites were found in purine and lipid metabolism, the protection against the osmotic stress and the prevention of the activation of the β-oxidation pathway. Overall, the effects of the combined exposure of HK-cells to high glucose and hypoxia are reasonably compatible with previous in vivo works.


2012 ◽  
Vol 443 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Seila Fernandez-Fernandez ◽  
Angeles Almeida ◽  
Juan P. Bolaños

Oxidative and nitrosative stress underlie the pathogenesis of a broad range of human diseases, in particular neurodegenerative disorders. Within the brain, neurons are the cells most vulnerable to excess reactive oxygen and nitrogen species; their survival relies on the antioxidant protection promoted by neighbouring astrocytes. However, neurons are also intrinsically equipped with a biochemical mechanism that links glucose metabolism to antioxidant defence. Neurons actively metabolize glucose through the pentose phosphate pathway, which maintains the antioxidant glutathione in its reduced state, hence exerting neuroprotection. This process is tightly controlled by a key glycolysis-promoting enzyme and is dependent on an appropriate supply of energy substrates from astrocytes. Thus brain bioenergetic and antioxidant defence is coupled between neurons and astrocytes. A better understanding of the regulation of this intercellular coupling should be important for identifying novel targets for future therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document