scholarly journals OsnR is an autoregulatory negative transcription factor controlling redox-dependent stress responses in Corynebacterium glutamicum

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Haeri Jeong ◽  
Younhee Kim ◽  
Heung-Shick Lee

Abstract Background Corynebacterium glutamicum is used in the industrial production of amino acids and nucleotides. During the course of fermentation, C. glutamicum cells face various stresses and employ multiple regulatory genes to cope with the oxidative stress. The osnR gene plays a negative regulatory role in redox-dependent oxidative-stress responses, but the underlying mechanism is not known yet. Results Overexpression of the osnR gene in C. glutamicum affected the expression of genes involved in the mycothiol metabolism. ChIP-seq analysis revealed that OsnR binds to the promoter region of multiple genes, including osnR and cg0026, which seems to function in the membrane-associated redox metabolism. Studies on the role of the osnR gene involving in vitro assays employing purified OsnR proteins and in vivo physiological analyses have identified that OsnR inhibits the transcription of its own gene. Further, oxidant diamide stimulates OsnR-binding to the promoter region of the osnR gene. The genes affected by the overexpression of osnR have been found to be under the control of σH. In the osnR-overexpressing strain, the transcription of sigH is significantly decreased and the stimulation of sigH transcription by external stress is lost, suggesting that osnR and sigH form an intimate regulatory network. Conclusions Our study suggests that OsnR not only functions as a transcriptional repressor of its own gene and of those involved in redox-dependent stress responses but also participates in the global transcriptional regulation by controlling the transcription of other master regulators, such as sigH.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang Mu ◽  
Huang-Guan Dai ◽  
Ling-Bo Luo ◽  
Jing Yang

Abstract Background Infertility is a common complication in obese men. Oxidative stress and testicular apoptosis play critical roles in obesity-induced spermatogenesis dysfunction. It has been reported that irisin, an exercise-induced myokine, may attenuate oxidative damage and testicular apoptosis in several diseases; however, its role in obesity-induced spermatogenesis dysfunction remains unclear. The purpose of this study was to investigate the role and underlying mechanism of irisin in obesity-induced dysfunction of spermatogenesis. Methods Male mice were fed a high-fat diet (HFD) for 24 weeks to establish a model of obesity-induced spermatogenesis dysfunction. To explore the effects of irisin, mice were subcutaneously infused with recombinant irisin for 8 weeks beginning at 16 weeks after starting a HFD. To confirm the role of AMP-activated protein kinase α (AMPKα), AMPKα-deficient mice were used. Results The data showed decreased serum irisin levels in obese patients, which was negatively correlated with sperm count and progressive motility. Irisin was downregulated in the plasma and testes of obese mice. Supplementation with irisin protected against HFD-induced spermatogenesis dysfunction and increased testosterone levels in mice. HFD-induced oxidative stress, endoplasmic reticulum (ER) stress and testicular apoptosis were largely attenuated by irisin treatment. Mechanistically, we identified that irisin activated the AMPKα signalling pathway. With AMPKα depletion, we found that the protective effects of irisin on spermatogenesis dysfunction were abolished in vivo and in vitro. Conclusions In conclusion, we found that irisin alleviated obesity-related spermatogenesis dysfunction via activation of the AMPKα signalling pathway. Based on these findings, we hypothesized that irisin is a potential therapeutic agent against obesity-related spermatogenesis dysfunction.


Diabetologia ◽  
2021 ◽  
Author(s):  
Yukina Takeichi ◽  
Takashi Miyazawa ◽  
Shohei Sakamoto ◽  
Yuki Hanada ◽  
Lixiang Wang ◽  
...  

Abstract Aims/hypothesis Mitochondria are highly dynamic organelles continuously undergoing fission and fusion, referred to as mitochondrial dynamics, to adapt to nutritional demands. Evidence suggests that impaired mitochondrial dynamics leads to metabolic abnormalities such as non-alcoholic steatohepatitis (NASH) phenotypes. However, how mitochondrial dynamics are involved in the development of NASH is poorly understood. This study aimed to elucidate the role of mitochondrial fission factor (MFF) in the development of NASH. Methods We created mice with hepatocyte-specific deletion of MFF (MffLiKO). MffLiKO mice fed normal chow diet (NCD) or high-fat diet (HFD) were evaluated for metabolic variables and their livers were examined by histological analysis. To elucidate the mechanism of development of NASH, we examined the expression of genes related to endoplasmic reticulum (ER) stress and lipid metabolism, and the secretion of triacylglycerol (TG) using the liver and primary hepatocytes isolated from MffLiKO and control mice. Results MffLiKO mice showed aberrant mitochondrial morphologies with no obvious NASH phenotypes during NCD, while they developed full-blown NASH phenotypes in response to HFD. Expression of genes related to ER stress was markedly upregulated in the liver from MffLiKO mice. In addition, expression of genes related to hepatic TG secretion was downregulated, with reduced hepatic TG secretion in MffLiKO mice in vivo and in primary cultures of MFF-deficient hepatocytes in vitro. Furthermore, thapsigargin-induced ER stress suppressed TG secretion in primary hepatocytes isolated from control mice. Conclusions/interpretation We demonstrated that ablation of MFF in liver provoked ER stress and reduced hepatic TG secretion in vivo and in vitro. Moreover, MffLiKO mice were more susceptible to HFD-induced NASH phenotype than control mice, partly because of ER stress-induced apoptosis of hepatocytes and suppression of TG secretion from hepatocytes. This study provides evidence for the role of mitochondrial fission in the development of NASH. Graphical abstract


2021 ◽  
pp. 1-11
Author(s):  
Hanqing Chen ◽  
Xiru Xu ◽  
Zhengqing Liu ◽  
Yong Wu

Hypertension is considered a risk factor for a series of systematic diseases. Known factors including genetic predisposition, age, and diet habits are strongly associated with the initiation of hypertension. The current study aimed to investigate the role of miR-22-3p in hypertension. In this study, we discovered that the miR-22-3p level was significantly decreased in the thoracic aortic vascular tissues and aortic smooth muscle cells (ASMCs) of spontaneously hypertensive rats. Functionally, the overexpression of miR-22-3p facilitated the switch of ASMCs from the synthetic to contractile phenotype. To investigate the underlying mechanism, we predicted 11 potential target mRNAs for miR-22-3p. After screening, chromodomain helicase DNA-binding 9 (CHD9) was validated to bind with miR-22-3p. Rescue assays showed that the co-overexpression of miR-22-3p and CHD9 reversed the inhibitory effect of miR-22-3p mimics on cell proliferation, migration, and oxidative stress in ASMCs. Finally, miR-22-3p suppressed vascular remodeling and oxidative stress in vivo. Overall, miR-22-3p regulated ASMC phenotype switch by targeting CHD9. This new discovery provides a potential insight into hypertension treatment.


Blood ◽  
2021 ◽  
Author(s):  
Alexandra Sipol ◽  
Erik Hameister ◽  
Busheng Xue ◽  
Julia Hofstetter ◽  
Maxim Barenboim ◽  
...  

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired anti-metabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is to reprogram gene expression in a metabolism-dependent manner. MondoA (also known as MLXIP), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets we found that MondoA overexpression is associated with a worse survival in pediatric common acute lymphoblastic leukemia (B-ALL). Using CRISPR/Cas9 and RNA interference approaches, we observed that MondoA depletion reduces transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid (TCA) cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced PDH activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give a novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


2022 ◽  
Author(s):  
Zhao Huang ◽  
Li Zhou ◽  
Jiufei Duan ◽  
Siyuan Qin ◽  
Yu Wang ◽  
...  

Abstract Loss of E-cadherin (ECAD), often caused by epigenetic inactivation, is closely associated with tumor metastasis. However, how ECAD is regulated in response to oxidative stress during tumorigenesis is largely unknown. Here we identify RNF25 as a new E3 ligase of ECAD, whose activation by oxidative stress leads to ECAD protein degradation in hepatocellular carcinoma (HCC). Loss of ECAD activates YAP, which in turn promotes the transcription of RNF25, thus forming a positive feedback loop to sustain the ECAD downregulation. YAP activation mitigates oxidative stress in detached HCC cells by upregulating antioxidant genes, protecting detached HCC cells from ferroptosis, resulting in anoikis resistance. Mechanistically, we found that protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344, which increases its kinase activity towards RNF25 phosphorylation at Ser450, facilitating RNF25-mediated degradation of ECAD. Moreover, RNF25 expression is associated with HCC metastasis and depletion of RNF25 is sufficient to diminish HCC invasion and metastasis in vitro and in vivo. Together, these results identify a dual role of RNF25 as a critical regulator of ECAD protein turnover, promoting both anoikis resistance and metastasis, and PKA is a necessary redox sensor to enable this process. Our study provides mechanistic insight into how tumor cells sense oxidative stress signals to spread while escaping cell death.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Violaine Sironval ◽  
Mihaly Palmai-Pallag ◽  
Rita Vanbever ◽  
François Huaux ◽  
Jorge Mejia ◽  
...  

Abstract Background Li-ion batteries (LIB) are increasingly used worldwide. They are made of low solubility micrometric particles, implying a potential for inhalation toxicity in occupational settings and possibly for consumers. LiCoO2 (LCO), one of the most used cathode material, induces inflammatory and fibrotic lung responses in mice. LCO also stabilizes hypoxia-inducible factor (HIF) -1α, a factor implicated in inflammation, fibrosis and carcinogenicity. Here, we investigated the role of cobalt, nickel and HIF-1α as determinants of toxicity, and evaluated their predictive value for the lung toxicity of LIB particles in in vitro assays. Results By testing a set of 5 selected LIB particles (LCO, LiNiMnCoO2, LiNiCoAlO2) with different cobalt and nickel contents, we found a positive correlation between their in vivo lung inflammatory activity, and (i) Co and Ni particle content and their bioaccessibility and (ii) the stabilization of HIF-1α in the lung. Inhibition of HIF-1α with chetomin or PX-478 blunted the lung inflammatory response to LCO in mice. In IL-1β deficient mice, HIF-1α was the upstream signal of the inflammatory lung response to LCO. In vitro, the level of HIF-1α stabilization induced by LIB particles in BEAS-2B cells correlated with the intensity of lung inflammation induced by the same particles in vivo. Conclusions We conclude that HIF-1α, stabilized in lung cells by released Co and Ni ions, is a mechanism-based biomarker of lung inflammatory responses induced by LIB particles containing Co/Ni. Documenting the Co/Ni content of LIB particles, their bioaccessibility and their capacity to stabilize HIF-1α in vitro can be used to predict the lung inflammatory potential of LIB particles.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


2020 ◽  
Vol 21 (7) ◽  
pp. 2549 ◽  
Author(s):  
Asghar Ali ◽  
Mark Stenglein ◽  
Thomas Spencer ◽  
Gerrit Bouma ◽  
Russell Anthony ◽  
...  

LIN28 inhibits let-7 miRNA maturation which prevents cell differentiation and promotes proliferation. We hypothesized that the LIN28-let-7 axis regulates proliferation-associated genes in sheep trophectoderm in vivo. Day 9-hatched sheep blastocysts were incubated with lentiviral particles to deliver shRNA targeting LIN28 specifically to trophectoderm cells. At day 16, conceptus elongation was significantly reduced in LIN28A and LIN28B knockdowns. Let-7 miRNAs were significantly increased and IGF2BP1-3, HMGA1, ARID3B, and c-MYC were decreased in trophectoderm from knockdown conceptuses. Ovine trophoblast (OTR) cells derived from day 16 trophectoderm are a useful tool for in vitro experiments. Surprisingly, LIN28 was significantly reduced and let-7 miRNAs increased after only a few passages of OTR cells, suggesting these passaged cells represent a more differentiated phenotype. To create an OTR cell line more similar to day 16 trophectoderm we overexpressed LIN28A and LIN28B, which significantly decreased let-7 miRNAs and increased IGF2BP1-3, HMGA1, ARID3B, and c-MYC compared to control. This is the first study showing the role of the LIN28-let-7 axis in trophoblast proliferation and conceptus elongation in vivo. These results suggest that reduced LIN28 during early placental development can lead to reduced trophoblast proliferation and sheep conceptus elongation at a critical period for successful establishment of pregnancy.


2004 ◽  
Vol 50 (11) ◽  
pp. 2136-2140 ◽  
Author(s):  
Marie Bennermo ◽  
Claes Held ◽  
Sten Stemme ◽  
Carl-Göran Ericsson ◽  
Angela Silveira ◽  
...  

Abstract Background: A single-nucleotide polymorphism (SNP) in the promoter region of the interleukin-6 (IL-6) gene at position −174 (G>C) has been reported to be associated with a variety of major diseases, such as Alzheimer disease, atherosclerosis, and cardiovascular disease, cancer, non-insulin-dependent diabetes mellitus, osteoporosis, sepsis, and systemic-onset juvenile chronic arthritis. However, authors of previous in vitro and in vivo studies have reported conflicting results regarding the functionality of this polymorphism. We therefore aimed to clarify the role of the −174 SNP for the induction of IL-6 in vivo. Methods: We vaccinated 20 and 18 healthy individuals homozygous for the −174 C and G alleles, respectively, with 1 mL of Salmonella typhii vaccine. IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) were measured in the blood at baseline and up to 24 h after vaccination. Results: Individuals with the G genotype had significantly higher plasma IL-6 values at 6, 8, and 10 h after vaccination than did individuals with the C genotype (P <0.005). There were no differences between the two genotypes regarding serum concentrations of IL-1β and TNF-α before or after vaccination. Conclusions: The −174 G>C SNP in the promoter region of the IL-6 gene is functional in vivo with an increased inflammatory response associated with the G allele. Considering the central role of IL-6 in a variety of major diseases, the present finding might be of major relevance.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
A. N. Karunasiri ◽  
C. M. Senanayake ◽  
H. Hapugaswatta ◽  
N. Jayathilaka ◽  
K. N. Seneviratne

Coconut oil meal, a cheap by-product of coconut oil production, is a rich source of phenolic antioxidants. Many age-related diseases are caused by reactive oxygen species- (ROS-) induced damage to macromolecules such as lipids, proteins, and DNA. In the present study, the protective effect of the phenolic extract of coconut oil meal (CMPE) against macromolecular oxidative damage was evaluated using in vitro and in vivo models. Sunflower oil, bovine serum albumin (BSA), and plasmid DNA were used in the in vitro study, and thiobarbituric acid reactive substances (TBARS), protein carbonyl, and nicked DNA were evaluated as oxidation products. The inhibitory effect of CMPE against H2O2-induced macromolecular damage was evaluated using cultured HEp-2 cells. The results indicate that CMPE inhibits macromolecular damage both in vitro and in vivo. In addition, CMPE regulates redox status of HEp-2 cells under oxidative stress conditions by maintaining higher reduced glutathione levels. There was no significant difference in the expression of glutathione peroxidase in stressed and unstressed cells suggesting that CMPE regulates the cellular oxidative stress responses without affecting the expression of oxidative stress response genes. Oral feeding of Wistar rats with CMPE improves the serum and plasma antioxidant status without causing any toxic effects.


Sign in / Sign up

Export Citation Format

Share Document