scholarly journals Effects of Cigarette Smoking on Influenza Virus/Host Interplay

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1636
Author(s):  
Jerald Chavez ◽  
Rong Hai

Cigarette smoking has been shown to increase the risk of respiratory infection, resulting in the exacerbation of infectious disease outcomes. Influenza viruses are a major respiratory viral pathogen, which are responsible for yearly epidemics that result in between 20,000 and 50,000 deaths in the US alone. However, there are limited general summaries on the impact of cigarette smoking on influenza pathogenic outcomes. Here, we will provide a systematic summarization of the current understanding of the interplay of smoking and influenza viral infection with a focus on examining how cigarette smoking affects innate and adaptive immune responses, inflammation levels, tissues that contribute to systemic chronic inflammation, and how this affects influenza A virus (IAV) disease outcomes. This summarization will: (1) help to clarify the conflict in the reports on viral pathogenicity; (2) fill knowledge gaps regarding critical anti-viral defenses such as antibody responses to IAV; and (3) provide an updated understanding of the underlying mechanism behind how cigarette smoking influences IAV pathogenicity.

Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Douglas Levy ◽  
Sydney L Goldberg ◽  
Emily P Hyle ◽  
Krishna P Reddy

Background: The AHA’s 2030 Impact Goals seek to increase population health-adjusted life expectancy (LE) by 2y. Tobacco is a top contributor to all-cause mortality and cardiovascular disease (CVD). We estimated the potential contribution of improved tobacco control to achieve the 2030 Impact Goals in the US. Methods: We used the validated STOP microsimulation model with NHIS estimates of age- and sex-stratified mortality and CVD incidence to project changes in LE, as well as 10y, 20y, and lifetime CVD cumulative incidence, if cigarette smoking declined among the current US population. We assessed the impact of preventing initiation (current v never smokers) or increasing cessation (current v former smokers) at different ages. To examine the maximum impact of population-wide cessation, we projected changes in population LE and CVD incidence if smoking prevalence among those ≥20yo went immediately to 0%. Results: Preventing smoking initiation increases LE by 10.2y (men [M]) and 9.1y (women [W]) and reduces lifetime CVD incidence by 16.8% (M) and 26.2% (W) compared to lifetime smoking. Even cessation at age 60 extends LE by 3.7y (M) and 2.5y (W) and reduces 10y CVD incidence by 39.1% (M) and 59.4% (W) (Table). Total elimination of cigarette smoking in the 2020 US population aged ≥20y (e.g. by outlawing cigarettes) would increase the cohort LE by 0.4 (M) and 0.2 (W) years and reduce 20y CVD incidence by 6.0% (M) and 7.0% (W). Conclusion: Preventing smoking initiation offers the greatest benefit, but cessation at any age substantially improves LE and reduces CVD risk. The modest potential contribution of tobacco elimination to achieving the 2030 Impact Goals is due to already low smoking prevalence: <14% (projected) in 2020.


2015 ◽  
Vol 22 (8) ◽  
pp. 957-964 ◽  
Author(s):  
Karen L. Laurie ◽  
Othmar G. Engelhardt ◽  
John Wood ◽  
Alan Heath ◽  
Jacqueline M. Katz ◽  
...  

ABSTRACTThe microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future.


2019 ◽  
Vol 147 ◽  
Author(s):  
M. Pan ◽  
H. P. Yang ◽  
J. Jian ◽  
Y. Kuang ◽  
J. N. Xu ◽  
...  

AbstractThe seasonality of individual influenza subtypes/lineages and the association of influenza epidemics with meteorological factors in the tropics/subtropics have not been well understood. The impact of the 2009 H1N1 pandemic on the prevalence of seasonal influenza virus remains to be explored. Using wavelet analysis, the periodicities of A/H3N2, seasonal A/H1N1, A/H1N1pdm09, Victoria and Yamagata were identified, respectively, in Panzhihua during 2006–2015. As a subtropical city in southwestern China, Panzhihua is the first industrial city in the upper reaches of the Yangtze River. The relationship between influenza epidemics and local climatic variables was examined based on regression models. The temporal distribution of influenza subtypes/lineages during the pre-pandemic (2006–2009), pandemic (2009) and post-pandemic (2010–2015) years was described and compared. A total of 6892 respiratory specimens were collected and 737 influenza viruses were isolated. A/H3N2 showed an annual cycle with a peak in summer–autumn, while A/H1N1pdm09, Victoria and Yamagata exhibited an annual cycle with a peak in winter–spring. Regression analyses demonstrated that relative humidity was positively associated with A/H3N2 activity while negatively associated with Victoria activity. Higher prevalence of A/H1N1pdm09 and Yamagata was driven by lower absolute humidity. The role of weather conditions in regulating influenza epidemics could be complicated since the diverse viral transmission modes and mechanism. Differences in seasonality and different associations with meteorological factors by influenza subtypes/lineages should be considered in epidemiological studies in the tropics/subtropics. The development of subtype- and lineage-specific prevention and control measures is of significant importance.


2015 ◽  
Vol 144 (8) ◽  
pp. 1579-1583
Author(s):  
J. Y. WONG ◽  
P. WU ◽  
E. H. Y. LAU ◽  
T. K. TSANG ◽  
V. J. FANG ◽  
...  

SUMMARYDuring the early stage of an epidemic, timely and reliable estimation of the severity of infections are important for predicting the impact that the influenza viruses will have in the population. We obtained age-specific deaths and hospitalizations for patients with laboratory-confirmed H1N1pdm09 infections from June 2009 to December 2009 in Hong Kong. We retrospectively obtained the real-time estimates of the hospitalization fatality risk (HFR), using crude estimation or allowing for right-censoring for final status in some patients. Models accounting for right-censoring performed better than models without adjustments. The risk of deaths in hospitalized patients with confirmed H1N1pdm09 increased with age. Reliable estimates of the HFR could be obtained before the peak of the first wave of H1N1pdm09 in young and middle-aged adults but after the peak in the elderly. In the next influenza pandemic, timely estimation of the HFR will contribute to risk assessment and disease control.


2012 ◽  
Vol 93 (10) ◽  
pp. 2204-2214 ◽  
Author(s):  
Lindomar Pena ◽  
Amy L. Vincent ◽  
Crystal L. Loving ◽  
Jamie N. Henningson ◽  
Kelly M. Lager ◽  
...  

The PB1-F2 protein of the influenza A viruses (IAVs) can act as a virulence factor in mice. Its contribution to the virulence of IAV in swine, however, remains largely unexplored. In this study, we chose two genetically related H3N2 triple-reassortant IAVs to assess the impact of PB1-F2 in virus replication and virulence in pigs. Using reverse genetics, we disrupted the PB1-F2 ORF of A/swine/Wisconsin/14094/99 (H3N2) (Sw/99) and A/turkey/Ohio/313053/04 (H3N2) (Ty/04). Removing the PB1-F2 ORF led to increased expression of PB1-N40 in a strain-dependent manner. Ablation of the PB1-F2 ORF (or incorporation of the N66S mutation in the PB1-F2 ORF, Sw/99 N66S) affected the replication in porcine alveolar macrophages of only the Sw/99 KO (PB1-F2 knockout) and Sw/99 N66S variants. The Ty/04 KO strain showed decreased virus replication in swine respiratory explants, whereas no such effect was observed in Sw/99 KO, compared with the wild-type (WT) counterparts. In pigs, PB1-F2 did not affect virus shedding or viral load in the lungs for any of these strains. Upon necropsy, PB1-F2 had no effect on the lung pathology caused by Sw/99 variants. Interestingly, the Ty/04 KO-infected pigs showed significantly increased lung pathology at 3 days post-infection compared with pigs infected with the Ty/04 WT strain. In addition, the pulmonary levels of interleukin (IL)-6, IL-8 and gamma interferon were regulated differentially by the expression of PB1-F2. Taken together, these results indicate that PB1-F2 modulates virus replication, virulence and innate immune responses in pigs in a strain-dependent fashion.


2006 ◽  
Vol 50 (11) ◽  
pp. 3809-3815 ◽  
Author(s):  
M. A. Rameix-Welti ◽  
F. Agou ◽  
P. Buchy ◽  
S. Mardy ◽  
J. T. Aubin ◽  
...  

ABSTRACT Geographic spread of highly pathogenic avian H5N1 influenza viruses may give rise to an influenza pandemic. During the first months of a pandemic, control measures would rely mainly on antiviral drugs, such as the neuraminidase (NA) inhibitors oseltamivir and zanamivir. In this study, we compare the sensitivities to oseltamivir of the NAs of several highly pathogenic H5N1 viruses isolated in Asia from 1997 to 2005. The corresponding 50% inhibitory concentrations were determined using a standard in vitro NA inhibition assay. The Km for the substrate and the affinity for the inhibitor (Ki ) of NA were determined for a 1997 and a 2005 virus, using an NA inhibition assay on cells transiently expressing the viral enzyme. Our data show that the sensitivities of the NAs of H5N1 viruses isolated in 2004 and 2005 to oseltamivir are about 10-fold higher than those of earlier H5N1 viruses or currently circulating H1N1 viruses. Three-dimensional modeling of the N1 protein predicted that Glu248Gly and Tyr252His changes could account for increased sensitivity. Our data indicate that genetic variation in the absence of any drug-selective pressure may result in significant variations in sensitivity to anti-NA drugs. Although the clinical relevance of a 10-fold increase in the sensitivity of NA to oseltamivir needs to be investigated further, the possibility that sensitivity to anti-NA drugs could increase (or possibly decrease) significantly, even in the absence of treatment, underscores the need for continuous evaluation of the impact of genetic drift on this parameter, especially for influenza viruses with pandemic potential.


2019 ◽  
Vol 24 (31) ◽  
Author(s):  
Ainara Mira-Iglesias ◽  
F Xavier López-Labrador ◽  
Víctor Baselga-Moreno ◽  
Miguel Tortajada-Girbés ◽  
Juan Mollar-Maseres ◽  
...  

Introduction Influenza immunisation is recommended for elderly people each season. The influenza vaccine effectiveness (IVE) varies annually due to influenza viruses evolving and the vaccine composition. Aim To estimate, in inpatients ≥ 60 years old, the 2017/18 trivalent IVE, overall, by vaccine type and by strain. The impact of vaccination in any of the two previous seasons (2016/17 and 2015/16) on current (2017/18) IVE was also explored. Methods This was a multicentre prospective observational study within the Valencia Hospital Surveillance Network for the Study of Influenza and Respiratory Viruses Disease (VAHNSI, Spain). The test-negative design was applied taking laboratory-confirmed influenza as outcome and vaccination status as main exposure. Information about potential confounders was obtained from clinical registries and/or by interviewing patients; vaccine information was only ascertained by registries. Results Overall, 2017/18 IVE was 9.9% (95% CI: −15.5 to 29.6%), and specifically, 48.3% (95% CI: 13.5% to 69.1%), −29.9% (95% CI: −79.1% to 5.8%) and 25.7% (95% CI: −8.8% to 49.3%) against A(H1N1)pdm09, A(H3N2) and B/Yamagata lineage, respectively. For the adjuvanted and non-adjuvanted vaccines, overall IVE was 10.0% (95% CI: −24.4% to 34.9%) and 7.8% (95% CI: −23.1% to 31.0%) respectively. Prior vaccination significantly protected against influenza B/Yamagata lineage (IVE: 50.2%; 95% CI: 2.3% to 74.6%) in patients not vaccinated in the current season. For those repeatedly vaccinated against influenza A(H1N1)pdm09, IVE was 46.4% (95% CI: 6.8% to 69.2%). Conclusion Our data revealed low vaccine effectiveness against influenza in hospitalised patients ≥60 years old in 2017/18. Prior vaccination protected against influenza A(H1N1)pdm09 and B/Yamagata-lineage.


2020 ◽  
Author(s):  
Kyla L. Hooker ◽  
Vitaly V. Ganusov

AbstractInfluenza viruses infect millions of humans every year causing an estimated 400,000 deaths globally. Due to continuous virus evolution current vaccines provide only limited protection against the flu. Several antiviral drugs are available to treat influenza infection, and one of the most most commonly used drugs is oseltamivir (Tamiflu). While the mechanism of action of oseltamivir as a neuraminidase inhibitor is well understood, the impact of oseltamivir on influenza virus dynamics in humans has been controversial. Many clinical trials with oseltamivir have been done by pharmaceutical companies such as Roche but the results of these trials until recently have been reported as summary reports or papers. Typically, such reports included median virus shedding curves for placebo and drug-treated influenza virus infected volunteers often indicating high efficacy of the early treatment. However, median shedding curves may be not accurately representing drug impact in individual volunteers. Importantly, due to public pressure clinical trials data testing oseltamivir efficacy has been recently released in the form of redacted PDF documents. We digitized and re-analyzed experimental data on influenza virus shedding in human volunteers from three previously published trials: on influenza A (1 trial) or B viruses (2 trials). Given that not all volunteers exposed to influenza viruses actually start virus shedding we found that impact of oseltamivir on the virus shedding dynamics was dependent on i) selection of volunteers that were infected with the virus, and ii) the detection limit in the measurement assay; both of these details were not well articulated in the published studies. By assuming that any viral measurement is above the limit of detection we could match previously published data on median influenza A virus (flu A study) shedding but not on influenza B virus shedding (flu B study B) in human volunteers. Additional analyses confirmed that oseltamivir had an impact on the duration of shedding and overall shedding (defined as area under the curve) but this result was varied by the trial. Interestingly, treatment had no impact on the rates at which shedding increased or declined with time in individual volunteers. Additional analyses showed that oseltamivir impacted the kinetics of the start and end of viral shedding and in about 20-40% of volunteers treatment had no impact on viral shedding duration. Our results suggest an unusual impact of oseltamivir on influenza viruses shedding kinetics and caution about the use of published median data or data from a few individuals for inferences. Furthermore, we call for the need to publish raw data from critical clinical trials that can be then independently analyzed.


2019 ◽  
Vol 14 (3) ◽  
pp. 92-100
Author(s):  
O. R. Druzyaka ◽  
A. V. Druzyaka ◽  
M. A. Gulyaeva ◽  
F. Huettmann ◽  
A. M. Shestopalov

Aim. The circulation and transmission of pathogens is a global biological phenomenon that is closely associated with bird migration. This analysis was carried out with  the aim of understanding and assessing the prospects of using the stable isotope  method to study the circulation and transmission of the avian influenza A virus via  migratory birds. Discussion. Insufficient data on the distances of migration of infected birds and their  interpopulational relationships leaves open the question of the transmission of highly pathogenic influenza viruses (HSV) in the wild bird population. A deeper study of  the role of migrations in the spread of HSV may possibly allow the more effective  investigation of the transmission of the viral pathogen between individuals at migration stopover sites and the clarification of global migration routes. New methodological approaches are providing a more complete picture of the geography and phenology of migrations, as well as of the consequences of migratory behavior for species biology. The study of the quantitative component of migratory flows based on  the analysis of the content of stable isotopes (SIMS) in bird tissues seems very promising. This method is being applied to the solution of various environmental issues,  including the study of animal migrations.   Conclusion. Based on data from the scientific literature, it is shown that SIMS is  promising for the clarification of bird migration routes and the quantification of their  intensity. The resolving power of the method is sufficient to determine the migration  pathways of carriers of viral pathogens on the scale of zoogeographic subdomains  and in even further detail. However, to date, there have been few such studies: in  Russia they have not been conducted at all. The increased use of the SIMS methodology may possibly reveal new ways in which viral infections are spread via birds.  


Sign in / Sign up

Export Citation Format

Share Document