scholarly journals Identification of MAMP-Responsive Plasma Membrane-Associated Proteins in Arabidopsis thaliana Following Challenge with Different LPS Chemotypes from Xanthomonas campestris

Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 787
Author(s):  
Raeesa H. Hussan ◽  
Ian A. Dubery ◽  
Lizelle A. Piater

Lipopolysaccharides (LPS) are recognized as microbe-associated molecular patterns (MAMPs) responsible for eliciting defense-related responses and while the effects have been well-documented in mammals, there is a lack of knowledge regarding the mechanism of perception in plant systems and recognized structural moieties within the macromolecular lipoglycan structure. Thus, identification of the LPS plasma membrane (PM) receptor(s)/receptor complex in Arabidopsis thaliana through proteomics will contribute to a deeper understanding of induced defense responses. As such, structurally characterized LPS chemotypes from Xanthomonas campestris pv. campestris (Xcc) wild-type 8004 (prototypical smooth-type LPS) and mutant 8530 (truncated core with no O–chain) strains were utilized to pre-treat A. thaliana plants. The associated proteomic response/changes within the PM were compared over a 24 h period using mass spectrometry-based methodologies following three variants of LPS-immobilized affinity chromatography. This resulted in the identification of proteins from several functional categories, but importantly, those involved in perception and defense. The distinct structural features between wild-type and mutant LPS are likely responsible for the differential changes to the proteome profiles, and many of the significant proteins were identified in response to the wild-type Xcc LPS where it is suggested that the core oligosaccharide and O-chain participate in recognition by receptor-like kinases (RLKs) in a multiprotein complex and, notably, varied from that of the mutant chemotype.

2020 ◽  
Vol 21 (5) ◽  
pp. 1722 ◽  
Author(s):  
Fan-Chen Huang ◽  
Hau-Hsuan Hwang

Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process.


2016 ◽  
Vol 113 (12) ◽  
pp. 3389-3394 ◽  
Author(s):  
Isabel M. L. Saur ◽  
Yasuhiro Kadota ◽  
Jan Sklenar ◽  
Nicholas J. Holton ◽  
Elwira Smakowska ◽  
...  

Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently inNicotiana benthamianaand immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, andNbCSPR-silenced plants are impaired in csp22-induced defense responses.NbCSPRconfers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth andAgrobacterium-mediated transformation of floweringN. benthamianaplants. Transgenic expression ofNbCSPRintoArabidopsis thalianaconferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.


Oecologia ◽  
2005 ◽  
Vol 145 (3) ◽  
pp. 415-424 ◽  
Author(s):  
M. Gabriela Bidart-Bouzat ◽  
Richard Mithen ◽  
May R. Berenbaum

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Lakshmi Soujanya ◽  
J. C. Sekhar ◽  
C. V. Ratnavathi ◽  
Chikkappa G. Karjagi ◽  
E. Shobha ◽  
...  

AbstractPink stem borer (PSB) causes considerable yield losses to maize. Plant–insect interactions have significant implications for sustainable pest management. The present study demonstrated that PSB feeding, mechanical wounding, a combination of mechanical wounding and PSB regurgitation and exogenous application of methyl jasmonate have induced phenolic compound mediated defense responses both at short term (within 2 days of treatment) and long term (in 15 days of treatment) in leaf and stalk tissues of maize. The quantification of two major defense related phenolic compounds namely p-Coumaric acid (p-CA) and ferulic acid (FA) was carried out through ultra-fast liquid chromatography (UFLC) at 2 and 15 days after imposing the above treatments. The p-CA content induced in leaf tissues of maize genotypes were intrinsically higher when challenged by PSB attack at V3 and V6 stages in short- and long-term responses. Higher p-CA content was observed in stalk tissues upon wounding and regurgitation in short- and long-term responses at V3 and V6 stages. Significant accumulation of FA content was also observed in leaf tissues in response to PSB feeding at V3 stage in long-term response while at V6 stage it was observed both in short- and long-term responses. In stalk tissues, methyl jasmonate induced higher FA content in short-term response at V3 stage. However, at V6 stage PSB feeding induced FA accumulation in the short-term while, wounding and regurgitation treatment-induced defense responses in the long-term. In general, the resistant (DMRE 63, CM 500) and moderately resistant genotypes (WNZ ExoticPool) accumulated significantly higher contents of p-CA and FA content than susceptible ones (CM 202, BML 6) in most of the cases. The study indicates that phenolic mediated defense responses in maize are induced by PSB attack followed by wounding and regurgitation compared to the other induced treatments. Furthermore, the study confirmed that induced defense responses vary with plant genotype, stage of crop growth, plant tissue and short and long-term responses. The results of the study suggested that the Phenolic acids i.e. p-CA and FA may contribute to maize resistance mechanisms in the maize-PSB interaction system.


2004 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Magali Merkx-Jacques ◽  
Jacqueline C. Bede

Abstract Plants exhibit remarkable plasticity in their ability to differentiate between herbivorous insect species and subtly adjust their defense responses to target distinct pests. One key mechanism used by plants to recognize herbivorous caterpillars is elicitors present in their oral secretions; however, these elicitors not only cause the induction of plant defenses but recent evidence suggests that they may also suppress plant responses. The absence of “expected changes” in induced defense responses of insect-infested plants has been attributed to hydrogen peroxide produced by caterpillar salivary glucose oxidase (GOX). Activity of this enzyme is variable among caterpillar species; it was detected in two generalist caterpillars, the beet armyworm (Spodoptera exigua) and the bertha armyworm (Mamestra configurata), but not in other generalist or specialist caterpillar species tested. In the beet armyworm, GOX activity fluctuated over larval development with high activity associated with the salivary glands of fourth instars. Larval salivary GOX activity of the beet armyworm and the bertha armyworm was observed to be significantly higher in caterpillars reared on artificial diet as compared with those reared on Medicago truncatula plants. This implies that a factor in the diet is involved in the regulation of caterpillar salivary enzyme activity. Therefore, plant diet may be regulating caterpillar oral elicitors that are involved in the regulation of plant defense responses: our goal is to understand these two processes.


2012 ◽  
Vol 36 (4) ◽  
pp. 383-390 ◽  
Author(s):  
Ricardo Borges Pereira ◽  
Gilvaine Ciavareli Lucas ◽  
Fabiano José Perina ◽  
Pedro Martins Ribeiro Júnior ◽  
Eduardo Alves

The rust and brown eye spot are the main coffee diseases. The losses are due to intense defoliation of plants, which has reduced its production and longevity. The brown eye spot also occurs in fruits, with negative effects on the beverage quality. Some essential oils have presented promising results in the control of plant diseases, as an alternative to the use of fungicides. The objective of this study was to evaluate citronella essential oil in the control of rust and brown eye spot and in the activation of coffee plants defense responses. Twelve-month-old plants were sprayed with citronella oil 1000 µL L-1, acibenzolar-S-methyl 200 mg L-1 and tebuconazole fungicide 200 mg L-1. Plants were inoculated with Hemileia vastatrix and Cercospora coffeicola seven days later. The application was repeated after 30 days. Plants with five months were sprayed with the same treatments to assess the induced defense responses. Citronella oil controlled rust and brown eye spot with efficiencies of 47.2% and 29.7%, respectively, while tebuconazole presented control of 96.5% and 90.5%, respectively. Acibenzolar-S-methyl reduced brown eye spot by 55.9% and showed no significant control of rust. Citronella oil increased peroxidase and chitinase activities in five months coffee plants 336, and 24 and 336 hours after spraying, respectively. Acibenzolar-S-methyl increased peroxidase, chitinase and ββ-1,3-glucanase activities 192, 288 and 336; 24 and; 240 hours after spraying, respectively. The treatments did not increase accumulation of phenols, but a significant increase in lignin was observed in plants sprayed with citronella oil.


FEBS Letters ◽  
2004 ◽  
Vol 571 (1-3) ◽  
pp. 31-34 ◽  
Author(s):  
Shin-ichi Ito ◽  
Tomomi Eto ◽  
Shuhei Tanaka ◽  
Naoki Yamauchi ◽  
Hiroyuki Takahara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document