scholarly journals Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release

2018 ◽  
Vol 11 (4) ◽  
pp. 92 ◽  
Author(s):  
Ortensia Parisi ◽  
Mariarosa Ruffo ◽  
Luca Scrivano ◽  
Rocco Malivindi ◽  
Antonio Vassallo ◽  
...  

The aim of the present study was the development of a “smart bandage” for the topical administration of diclofenac, in the treatment of localized painful and inflammatory conditions, incorporating Molecularly Imprinted Polymers (MIPs) for the controlled release of this anti-inflammatory drug. For this purpose, MIP spherical particles were synthesized by precipitation polymerization, loaded with the therapeutic agent and incorporated into the bandage surface. Batch adsorption binding studies were performed to investigate the adsorption isotherms and kinetics and the selective recognition abilities of the synthesized MIP. In vitro diffusion studies were also carried out using Franz cells and the obtained results were reported as percentage of the diffused dose, cumulative amount of diffused drug, steady-state drug flux and permeability coefficient. Moreover, the biocompatibility of the developed device was evaluated using the EPISKIN™ model. The Scatchard analysis indicated that the prepared MIP is characterized by the presence of specific binding sites for diclofenac, which are not present in the corresponding non-imprinted polymer, and the obtained results confirmed both the ability of the prepared bandage to prolong the drug release and the absence of skin irritation reactions. Therefore, these results support the potential application of the developed “smart bandage” as topical device for diclofenac sustained release.

2016 ◽  
Vol 4 (44) ◽  
pp. 7138-7145 ◽  
Author(s):  
Hirobumi Sunayama ◽  
Takeo Ohta ◽  
Atsushi Kuwahara ◽  
Toshifumi Takeuchi

An antibiotic-imprinted cavity with two different fluorescent dyes was prepared by molecular imprinting and subsequent post-imprinting modifications (PIMs), for the readout of a specific binding event as a fluorescence signal.


The Analyst ◽  
2015 ◽  
Vol 140 (9) ◽  
pp. 3113-3120 ◽  
Author(s):  
Elena V. Piletska ◽  
Bashar H. Abd ◽  
Agata S. Krakowiak ◽  
Anitha Parmar ◽  
Demi L. Pink ◽  
...  

A novel format of the microtitre plate equipped with magnetic inserts allows rapid and cost-effective development of the controlled release materials.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 570 ◽  
Author(s):  
Nutcha Larpant ◽  
Yaneenart Suwanwong ◽  
Somchai Boonpangrak ◽  
Wanida Laiwattanapaisal

Commercially available sorbent materials for solid-phase extraction are widely used in analytical laboratories. However, non-selective binding is a major obstacle for sample analysis. To overcome this problem, molecularly imprinted polymers (MIPs) were used as selective adsorbent materials prior to determining target analysts. In this study, the use of non-covalent molecularly imprinted polymers (MIPs) for cotinine adsorption on a paper-based scaffold was studied. Fiberglass paper was used as a paper scaffold for cotinine-selective MIP adsorption with the use of 0.5% agarose gel. The effects of salt, pH, sample matrix, and solvent on the cotinine adsorption and extraction process were investigated. Under optimal conditions, the adsorption isotherm of synthesized MIPs increased to 125.41 µg/g, whereas the maximum adsorption isotherm of non-imprinted polymers (NIPs) was stable at 42.86 µg/g. The ability of the MIP paper scaffold to absorb cotinine in water medium was approximately 1.8–2.8-fold higher than that of the NIP scaffold. From Scatchard analysis, two dissociation constants of MIPs were calculated to be 2.56 and 27.03 µM. Nicotine, myosmine, and N-nitrosonornicotine were used for selectivity testing, and the calculated selectivity factor of cotinine to nicotine, myosmine, and N-nitrosonornicotine was 1.56, 2.69, and 2.05, respectively. Overall, the MIP paper scaffold is promising for simple onsite sampling of cotinine and can be used to assess tobacco smoke exposure.


Author(s):  
DIANE FAUZI ◽  
FEBRINA AMELIA SAPUTRI

Molecularly Imprinted Polymers (MIPs) is a polymer that binds together to form a specific binding site that is selective for certain analytes. Its high stability, its synthesize simplicity, and it can ease costs significantly make it was applied widely as a receptor instead of antibodies or enzymes. MIPs can be re-developed into MIPs nanoparticles (MIP-NPs) which have greater potential. MIPs use in electrochemical sensors have relevant applications in daily life and have been tested in human samples. Electrochemical sensors have been successfully functioned with MIP-NPs leading to real-time monitoring of drugs, pesticides, environmental contaminants, and secondary metabolites, as well as molecules with biological relevance. The aim of this review is to summarize the developments and applications of MIP-NPs as a selective recognition component in electrochemical sensors with special emphasis on their analytical applications.


2004 ◽  
Vol 57 (8) ◽  
pp. 759 ◽  
Author(s):  
Lachlan Schwarz ◽  
Clovia I. Holdsworth ◽  
Adam McCluskey ◽  
Michael C. Bowyer

Molecularly imprinted polymers (MIPs) selective for the phenolic contaminant 2,4,6-trichlorophenol (2,4,6-TCP) were prepared and evaluated in three porogens of differing character (hexane, acetonitrile, dichloromethane). Rebinding of 2,4,6-TCP was found to be most effective in dichloromethane (imprinting factor: 13.2). Competitive binding studies performed against a range of close structural analogues showed a high preference for the target molecule, although partial recognition towards 2,4-dichlorophenol was also observed. Specificity was found to be dependent upon the presence of ring chlorine on the target, which suggested that these atoms participate in secondary binding interactions that are essential for successful recognition in the polymer cavity.


2018 ◽  
Vol 131 ◽  
pp. 283-292 ◽  
Author(s):  
Vanessa R.A. Ferreira ◽  
Manuel A. Azenha ◽  
Carlos M. Pereira ◽  
A. Fernando Silva

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1385 ◽  
Author(s):  
Liang Qiu ◽  
Guilaine Jaria ◽  
María Victoria Gil ◽  
Jundong Feng ◽  
Yaodong Dai ◽  
...  

In this work, magnetic yeast (MY) was produced through an in situ one-step method. Then, MY was used as the core and the antibiotic sulfamethoxazole (SMX) as the template to produce highly selective magnetic yeast-molecularly imprinted polymers (MY@MIPs). The physicochemical properties of MY@MIPs were assessed by Fourier-transform infrared spectroscopy (FT-IR), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), specific surface area (SBET) determination, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out to compare MY@MIPs with MY and MY@NIPs (magnetic yeast-molecularly imprinted polymers without template), with MY@MIPs showing a better performance in the removal of SMX from water. Adsorption of SMX onto MY@MIPs was described by the pseudo-second-order kinetic model and the Langmuir isotherm, with maximum adsorption capacities of 77 and 24 mg g−1 from ultrapure and wastewater, respectively. Furthermore, MY@MIPs displayed a highly selective adsorption toward SMX in the presence of other pharmaceuticals, namely diclofenac (DCF) and carbamazepine (CBZ). Finally, regeneration experiments showed that SMX adsorption decreased 21 and 34% after the first and second regeneration cycles, respectively. This work demonstrates that MY@MIPs are promising sorbent materials for the selective removal of SMX from wastewater.


Sign in / Sign up

Export Citation Format

Share Document