scholarly journals Non-Steroidal Anti-Inflammatory Drugs Increase Cisplatin, Paclitaxel, and Doxorubicin Efficacy against Human Cervix Cancer Cells

2020 ◽  
Vol 13 (12) ◽  
pp. 463
Author(s):  
Diana Xochiquetzal Robledo-Cadena ◽  
Juan Carlos Gallardo-Pérez ◽  
Víctor Dávila-Borja ◽  
Silvia Cecilia Pacheco-Velázquez ◽  
Javier Alejandro Belmont-Díaz ◽  
...  

This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning (“preventive protocol”; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation (“curative protocol”; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41–85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.

2018 ◽  
Vol 8 (5) ◽  
pp. 307-311 ◽  
Author(s):  
Selim Demir ◽  
Ibrahim Turan ◽  
Rezzan Aliyazicioglu ◽  
Serap Ozer Yaman ◽  
Yuksel Aliyazicioglu

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4463 ◽  
Author(s):  
Chun-Yi Huang ◽  
Tzu-Cheng Chang ◽  
Yu-Jing Wu ◽  
Yun Chen ◽  
Jih-Jung Chen

Three new compounds, 4-geranyloxy-2-hydroxy-6-isoprenyloxybenzophenone (1), hypericumone A (2) and hypericumone B (3), were obtained from the aerial parts of Hypericum sampsonii, along with six known compounds (4–9). The structures of these compounds were determined through spectroscopic and MS analyses. Hypericumone A (2), sampsonione J (8) and otogirinin A (9) exhibited potent inhibition (IC50 values ≤ 40.32 μM) against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. Otogirinin A (9) possessed the highest inhibitory effect on NO production with IC50 value of 32.87 ± 1.60 μM. The well-known proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α) was also inhibited by otogirinin A (9). Western blot results demonstrated that otogirinin A (9) downregulated the high expression of inducible nitric oxide synthase (iNOS). Further investigations on the mechanism showed that otogirinin A (9) blocked the phosphorylation of MAPK/JNK and IκBα, whereas it showed no effect on the phosphorylation of MAPKs/ERK and p38. In addition, otogirinin A (9) stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that otogirinin A (9) could be considered as potential compound for further development of NO production-targeted anti-inflammatory agent.


2020 ◽  
Vol 10 (23) ◽  
pp. 8656
Author(s):  
Ah-Reum Han ◽  
Yun-Seo Kil ◽  
Min Jeong Hong ◽  
Jisu Park ◽  
Hyeon Hwa Park ◽  
...  

Wheat (Triticum aestivum Linn.; Poaceae) is a very common and important food grain and ranks second in total cereal crop production. A large amount of wheat hull is produced after threshing that, as the non-food part of wheat, is agro-waste, accounting for 15~20% of the wheat. This study aimed at biologically and phytochemically investigating wheat hull for its valorization as a by-product. In our ongoing search for natural product-derived anti-inflammatory agents, T. aestivum hull was evaluated for its nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-activated RAW 264.7 cells, and the phytochemical investigation of the ethyl acetate fraction showing inhibitory effect led to the isolation of a flavone (1) and seven flavonolignans (2–8). Compounds 2–8 have not yet been isolated from Triticum species. All compounds were evaluated for their LPS-induced NO production inhibition, and 1, 2, 4, 6, and 8 exhibited inhibitory effects with IC50 values ranging from 24.14 to 58.95 μM. These results suggest the potential of using T. aestivum hull as a source for producing anti-inflammatory components, enhancing its valorization as a by-product.


Author(s):  
Ting-Chun Lin ◽  
Alison Germagian ◽  
Zhenhua Liu

Breast cancer is the leading cancer, accounting for approximately 15% cancer deaths in women worldwide. This study investigated the anti-inflammation and anticancer properties of two bioactive components from Antrodia camphorata(AC), a rare medicinal mushroom natively grown in Taiwan and commonly used in Chinese traditional medicine. The anti-inflammatory and antitumorigenic functions of Antroquinonol (AQ) and 4-Acetylantroquinonol B (4-AAQB) from AC were examined on breast cancer cell line MCF-7 with/without TNF-[Formula: see text] stimulation. Among nine inflammatory mediators (IL6, IL10, IL1[Formula: see text], IFN[Formula: see text], PTGS2, TGF[Formula: see text]1, TNF-[Formula: see text], CCL2 andCSF1) examined, AQ inhibited two of them (IL-10 and PTGS2), while 4-AAQB inhibited three of them (IL-10, PTGS2 andTNF-[Formula: see text] ([Formula: see text]¡ 0.05). TNF-[Formula: see text] stimulated expressions of five mediators (IL6, IL10, IFN[Formula: see text], PTGS2, and CCL2), and AQ and 4-AAQB inhibited IL6 elevation ([Formula: see text]¡ 0.05). Both components inhibited aromatase expression with/without TNF-[Formula: see text] stimulation, with 4-AAQB to be more effective ([Formula: see text]¡ 0.05). For immune checkpoint CD47, both components inhibited CD47 expression ([Formula: see text]¡ 0.05), but it did not respond to TNF-[Formula: see text] stimulation. For Wnt/[Formula: see text]- catenin signaling downstream genes (CCND1, C-MYC and AXIN2), both components have significant or marginal inhibitory effect on C-MYC in the condition with/without TNF-[Formula: see text] stimulation. The luciferase assay demonstrated that both components exhibited inhibitory effect on NF-[Formula: see text]B signaling and Wnt/[Formula: see text]-catenin signaling in the condition without TNF-[Formula: see text] stimulation. In conclusion, our results displayed an overall pattern that AQ and 4-AAQB possess potential anti-inflammatory and antitumorigenic functions in MCF-7 breast cancer cells and warranted further in vivo pre-clinical and clinical studies to explore their anticancer properties.


2007 ◽  
Vol 354 (3) ◽  
pp. 769-775 ◽  
Author(s):  
Dae-Wook Eun ◽  
Seong Hoon Ahn ◽  
Jeong Soo You ◽  
Jong Woo Park ◽  
Eun Kyung Lee ◽  
...  

1994 ◽  
Vol 11 (4) ◽  
pp. 207-210 ◽  
Author(s):  
Wenzhu Li (Wenzhou Li) ◽  
Kaixian Qian ◽  
Wendong Huang ◽  
Xinxin Zhang ◽  
Wanxi Chen

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6923
Author(s):  
Saul Vislei Simões da Silva ◽  
Orlando Maia Barboza ◽  
Jéssica Teles Souza ◽  
Érica Novaes Soares ◽  
Cleonice Creusa dos Santos ◽  
...  

Quercetin (Q) is a bioflavonoid with biological potential; however, poor solubility in water, extensive enzymatic metabolism and a reduced bioavailability limit its biopharmacological use. The aim of this study was to perform structural modification in Q by acetylation, thus, obtaining the quercetin pentaacetate (Q5) analogue, in order to investigate the biological potentials (antioxidant, antileishmania, anti-inflammatory and cytotoxicity activities) in cell cultures. Q5 was characterized by FTIR, 1H and 13C NMR spectra. The antioxidant potential was evaluated against the radical ABTS•+. The anti-inflammatory potential was evaluated by measuring the pro-inflammatory cytokine tumor necrosis factor (TNF) and the production of nitric oxide (NO) in peritoneal macrophages from BALB/c mice. Cytotoxicity tests were performed using the AlamarBlue method in cancer cells HepG2 (human hepatocarcinoma), HL-60 (promyelocytic leukemia) and MCR-5 (healthy human lung fibroblasts) as well as the MTT method for C6 cell cultures (rat glioma). Q and Q5 showed antioxidant activity of 29% and 18%, respectively, which is justified by the replacement of hydroxyls by acetyl groups. Q and Q5 showed concentration-dependent reductions in NO and TNF production (p < 0.05); Q and Q5 showed higher activity at concentrations > 40µM when compared to dexamethasone (20 µM). For the HL-60 lineage, Q5 demonstrated selectivity, inducing death in cancer cells, when compared to the healthy cell line MRC-5 (IC50 > 80 µM). Finally, the cytotoxic superiority of Q5 was verified (IC50 = 11 µM), which, at 50 µM for 24 h, induced changes in the morphology of C6 glioma cells characterized by a round body shape (not yet reported in the literature). The analogue Q5 had potential biological effects and may be promising for further investigations against other cell cultures, particularly neural ones.


2018 ◽  
Vol 234 (5) ◽  
pp. 5524-5536 ◽  
Author(s):  
Ileana Hernández-Reséndiz ◽  
Juan Carlos Gallardo-Pérez ◽  
Ambar López-Macay ◽  
Diana Xochiquetzal Robledo-Cadena ◽  
Enrique García-Villa ◽  
...  

2009 ◽  
Vol 330 (1-2) ◽  
pp. 131-140 ◽  
Author(s):  
Hana Radilova ◽  
Antonin Libra ◽  
Sarka Holasova ◽  
Martina Safarova ◽  
Alena Viskova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document