scholarly journals Zinc Binding to NAP-Type Neuroprotective Peptides: Nuclear Magnetic Resonance Studies and Molecular Modeling

2021 ◽  
Vol 14 (10) ◽  
pp. 1011
Author(s):  
Ancuta-Veronica Lupaescu ◽  
Cosmin Stefan Mocanu ◽  
Gabi Drochioiu ◽  
Catalina-Ionica Ciobanu

Aggregation of amyloid-β peptides (Aβ) is a hallmark of Alzheimer’s disease (AD), which is affecting an increasing number of people. Hence, there is an urgent need to develop new pharmaceutical treatments which could be used to prevent the AD symptomatology. Activity-dependent neuroprotective protein (ADNP) was found to be deficient in AD, whereas NAP, an 8-amino-acid peptide (1NAPVSIPQ8) derived from ADNP, was shown to enhance cognitive function. The higher tendency of zinc ion to induce Aβ aggregation and formation of amorphous aggregates is also well-known in the scientific literature. Although zinc binding to Aβ peptides was extensively investigated, there is a shortage of knowledge regarding the relationship between NAP peptide and zinc ions. Therefore, here, we investigated the binding of zinc ions to the native NAP peptide and its analog obtained by replacing the serine residue in the NAP sequence with tyrosine (1NAPVYIPQ8) at various molar ratios and pH values by mass spectrometry (MS) and nuclear magnetic resonancespectroscopy (NMR). Matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry confirmed the binding of zinc ions to NAP peptides, while the chemical shift of Asp1, observed in 1H-NMR spectra, provided direct evidence for the coordinating role of zinc in the N-terminal region. In addition, molecular modeling has also contributed largely to our understanding of Zn binding to NAP peptides.

2004 ◽  
Vol 57 (6) ◽  
pp. 511 ◽  
Author(s):  
Feda E. A. Ali ◽  
Kevin J. Barnham ◽  
Colin J. Barrow ◽  
Frances Separovic

The most common form of dementia in old age is Alzheimer’s disease (AD). The presence in the brain of senile plaque is the major pathological marker of AD. The plaques are primarily composed of aggregated amyloid-β peptide (Aβ). Aβ is a 40–42 amino acid peptide that is a proteolytic product derived from the β-amyloid precursor protein. The function of Aβ and the exact mechanism of Aβ aggregation and neurotoxicity are unclear. However, metal coordination by Aβ plays an important role in inducing aggregation and the generation of reactive oxygen species, which appears to be at least partially responsible for Aβ neurotoxicity. In this review we examine the role of copper and zinc ions in Aβ neurotoxicity, especially with regards to the generation of free radicals. We discuss the role of copper or zinc ions in oxidative damage and Aβ conformational changes and the relationship of these metals to AD.


2021 ◽  
Vol 22 (3) ◽  
pp. 1225
Author(s):  
Ziao Fu ◽  
William E. Van Nostrand ◽  
Steven O. Smith

The amyloid-β (Aβ) peptides are associated with two prominent diseases in the brain, Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA). Aβ42 is the dominant component of cored parenchymal plaques associated with AD, while Aβ40 is the predominant component of vascular amyloid associated with CAA. There are familial CAA mutations at positions Glu22 and Asp23 that lead to aggressive Aβ aggregation, drive vascular amyloid deposition and result in degradation of vascular membranes. In this study, we compared the transition of the monomeric Aβ40-WT peptide into soluble oligomers and fibrils with the corresponding transitions of the Aβ40-Dutch (E22Q), Aβ40-Iowa (D23N) and Aβ40-Dutch, Iowa (E22Q, D23N) mutants. FTIR measurements show that in a fashion similar to Aβ40-WT, the familial CAA mutants form transient intermediates with anti-parallel β-structure. This structure appears before the formation of cross-β-sheet fibrils as determined by thioflavin T fluorescence and circular dichroism spectroscopy and occurs when AFM images reveal the presence of soluble oligomers and protofibrils. Although the anti-parallel β-hairpin is a common intermediate on the pathway to Aβ fibrils for the four peptides studied, the rate of conversion to cross-β-sheet fibril structure differs for each.


Author(s):  
Jisu Shin ◽  
Seung-Hoon Yang ◽  
Young Eun Du ◽  
Keunwan Park ◽  
DaWon Kim ◽  
...  

Background: Alzheimer’s disease (AD) is characterized by the aggregation of two pathological proteins, amyloid-β (Aβ) and tau, leading to neuronal and cognitive dysfunction. Clearance of either Aβ or tau aggregates by immunotherapy has become a potential therapy, as these aggregates are found in the brain ahead of the symptom onset. Given that Aβ and tau independently and cooperatively play critical roles in AD development, AD treatments might require therapeutic approaches to eliminate both aggregates together. Objective: We aimed to discover a chemical drug candidate from natural sources for direct dissociation of both insoluble Aβ and tau aggregates through in vitro assessments. Methods: We isolated four borrelidin chemicals from a saltern-derived halophilic actinomycete strain of rare genus Nocardiopsis and simulated their docking interactions with Aβ fibrils. Then, anti-cytotoxic, anti-Aβ, and anti-tau effects of borrelidins were examined by MTT assays with HT22 hippocampal cell line, thioflavin T assays, and gel electrophoresis. Results: When HT22 cells were exposed to Aβ aggregates, the treatment of borrelidins alleviates the Aβ-induced toxicity. These anti-cytotoxic effects can be derived from the inhibitory functions of borrelidins against the Aβ aggregation as shown in thioflavin T and gel electrophoretic analyses. Among them, especially borrelidin, which exhibits the highest probability of docking, not only dissociates Aβ aggregates but also directly regulates tau aggregation. Conclusion: Borrelidin dissociates insoluble Aβ and tau aggregates together and our findings support the view that it is possible to develop an alternative chemical approach mimicking anti-Aβ or anti-tau immunotherapy for clearance of both aggregates.


2002 ◽  
Vol 30 (4) ◽  
pp. 525-529 ◽  
Author(s):  
B. Wolozin

Accumulation of a 40–42-amino acid peptide, termed amyloid-β peptide (Aβ), is associated with Alzheimer's disease (AD), and identifying medicines that inhibit Aβ could help patients with AD. Recent evidence suggests that a class of medicines that lower cholesterol by blocking the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), termed statins, can inhibit Aβ production. Increasing evidence suggests that the enzymes that generate Aβ function best in a high-cholesterol environment, which might explain why reducing cholesterol would inhibit Aβ production. Studies using both neurons and peripheral cells show that reducing cellular cholesterol levels, by stripping off the cholesterol with methyl-β-cyclodextrin or by treating the cells with HMG-CoA reductase inhibitors, decreases Aβ production. Studies performed on animal models and on humans concur with these results. In humans, lovastatin, an HMG-CoA reductase inhibitor, has been shown to reduce Aβ levels in blood of patients by up to 40%. The putative role of Aβ in AD raises the possibility that treating patients with statins might lower Aβ, and thereby either delay the occurrence of AD or retard the progression of AD. Two large retrospective studies support this hypothesis. Both studies suggest that patients taking statins had an approx. 70% lower risk of developing AD. Since statins are widely used by doctors, their ability to reduce Aβ offers a putative therapeutic strategy for treating AD by using medicines that have already been proved safe to use in humans.


2021 ◽  
Vol 13 (4) ◽  
pp. 656-661
Author(s):  
Yiyan Lv ◽  
Qiwei Zhan ◽  
Xiaoniu Yu

Microbial-induced degradation of aromatic organic compounds and mineralization of zinc ions have attracted much attention because of its low cost, simple operation and quick response. This research, toluene was decomposed and made the concentration of carbonate ions increased accordingly by the enzymatic pressing of microorganisms, meanwhile carbonate ions mineralized zinc ions into carbonate precipitations. The composition and microstructure were analyzed systematically. The analysis results indicated that carbonate precipitations, basic zinc carbonate, could be successfully prepared by microbial method. The particle size of basic zinc carbonate was nanometer, and its shape was near-spherical. Furthermore, the phase composition, functional groups and surface morphology of the precipitations prepared by different methods were basically the same. This work provided a new method for remediation of zinc ion pollution based on the degradation of toluene.


Sign in / Sign up

Export Citation Format

Share Document