soluble aβ oligomers
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Reem Halim Alattiya ◽  
Farah Khalid Tarish ◽  
Lina Loai Hashim ◽  
Saad Abdulrahman Hussain

Many epidemiological studies have suggested that consuming a diet rich in polyphenols can help prevent Alzheimer's disease (AD). Based on well-known in vitro and in vivo models of cerebral Aβ amyloidosis, we examined the data on the effects of various natural polyphenols on the aggregation of amyloid-protein (Aβ). These polyphenols effectively prevent oligomerization and fibril formation of Aβ through differential binding patterns, lowering Aβ oligomer-induced synaptic and neuronal toxicity, according to in vitro investigations. Furthermore, in a transgenic mouse model fed orally with such polyphenolic compounds, soluble Aβ oligomers as well as insoluble Aβ deposits in the brain were significantly reduced. Natural polyphenols exhibit anti-amyloidogenic effects on Aβ, in addition to well-known anti-oxidative and anti-inflammatory activities, according to an updated assessment of the literature, implying their potential as therapeutic and/or preventive agents for AD treatment. To prove polyphenols' efficacy as disease-modifying agents, well-designed clinical trials or preventive treatments using various polyphenols are required.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fanpeng Zhao ◽  
Ying Xu ◽  
Shichao Gao ◽  
Lixia Qin ◽  
Quillan Austria ◽  
...  

Abstract Background N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism and m6A dysregulation is implicated in various human diseases. In this study, we explored the potential role of RNA m6A modification in the pathogenesis of Alzheimer disease (AD). Methods We investigated the m6A modification and the expression of m6A regulators in the brain tissues of AD patients and determined the impact and underlying mechanism of manipulated expression of m6A levels on AD-related deficits both in vitro and in vivo. Results We found decreased neuronal m6A levels along with significantly reduced expression of m6A methyltransferase like 3 (METTL3) in AD brains. Interestingly, reduced neuronal m6A modification in the hippocampus caused by METTL3 knockdown led to significant memory deficits, accompanied by extensive synaptic loss and neuronal death along with multiple AD-related cellular alterations including oxidative stress and aberrant cell cycle events in vivo. Inhibition of oxidative stress or cell cycle alleviated shMettl3-induced apoptotic activation and neuronal damage in primary neurons. Restored m6A modification by inhibiting its demethylation in vitro rescued abnormal cell cycle events, neuronal deficits and death induced by METTL3 knockdown. Soluble Aβ oligomers caused reduced METTL3 expression and METTL3 knockdown exacerbated while METTL3 overexpression rescued Aβ-induced synaptic PSD95 loss in vitro. Importantly, METTL3 overexpression rescued Aβ-induced synaptic damage and cognitive impairment in vivo. Conclusions Collectively, these data suggested that METTL3 reduction-mediated m6A dysregulation likely contributes to neurodegeneration in AD which may be a therapeutic target for AD.


2021 ◽  
Author(s):  
Lei Liu ◽  
Hyunchang Kwak ◽  
Trebor L. Lawton ◽  
Shan‐Xue Jin ◽  
Angela L. Meunier ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiu Yang ◽  
Xu Li ◽  
Le Liu ◽  
Yuan-Hao Chen ◽  
Yue You ◽  
...  

AbstractAlzheimer’s disease (AD) is characterized by aberrant accumulation of extracellular β-amyloid (Aβ) peptides in the brain. Soluble Aβ oligomers are thought to be the most neurotoxic species and are correlated with cognitive dysfunction in early AD. However, there is still no effective treatment so far. We determined that Pep63, a small peptide, had a neuroprotective effect on synaptic plasticity and memory in our previous study. Here, we developed novel and multifunctional liposomes targeting both Aβ oligomers and fibrils based on a liposome delivery system. Transferrin-Pep63-liposomes (Tf-Pep63-Lip), possessing the ability for blood-brain barrier targeting, were also incorporated with phosphatidic acid (PA) and loaded with neuroprotective Pep63. We discovered that administration of Tf-Pep63-Lip could significantly reduce the Aβ burden in the hippocampus, and improve cognitive deficits in 6-month-old APP/PS1 mice in the Morris-Water maze task and fear-conditioning test with the combined effects of PA and Pep63. Tf-Pep63-Lip could capture Aβ oligomers or fibrils and then facilitated microglial chemotaxis nearby for clearance. Simultaneously, Tf-Pep63-Lip hindered Aβ1-42 aggregation and disaggregated Aβ1-42 assembly due to multivalent PA-Aβ. Pep63 effectively inhibited the binding between EphB2 and Aβ oligomers after release from liposomes and rescued NMDA receptors trafficking, the basis of synaptic plasticity. No side effects were observed in either APP/PS1 or wild-type mice, indicating that Tf-Pep63-Lip might be safe under the dosing regimen used in our experiment. Taken together, our results suggested that Tf-Pep63-Lip may serve as a safe and efficient agent for AD combination therapy.


2021 ◽  
Vol 22 (12) ◽  
pp. 6355
Author(s):  
Martin Tolar ◽  
John Hey ◽  
Aidan Power ◽  
Susan Abushakra

A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer’s disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.


2021 ◽  
Vol 22 (3) ◽  
pp. 1225
Author(s):  
Ziao Fu ◽  
William E. Van Nostrand ◽  
Steven O. Smith

The amyloid-β (Aβ) peptides are associated with two prominent diseases in the brain, Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA). Aβ42 is the dominant component of cored parenchymal plaques associated with AD, while Aβ40 is the predominant component of vascular amyloid associated with CAA. There are familial CAA mutations at positions Glu22 and Asp23 that lead to aggressive Aβ aggregation, drive vascular amyloid deposition and result in degradation of vascular membranes. In this study, we compared the transition of the monomeric Aβ40-WT peptide into soluble oligomers and fibrils with the corresponding transitions of the Aβ40-Dutch (E22Q), Aβ40-Iowa (D23N) and Aβ40-Dutch, Iowa (E22Q, D23N) mutants. FTIR measurements show that in a fashion similar to Aβ40-WT, the familial CAA mutants form transient intermediates with anti-parallel β-structure. This structure appears before the formation of cross-β-sheet fibrils as determined by thioflavin T fluorescence and circular dichroism spectroscopy and occurs when AFM images reveal the presence of soluble oligomers and protofibrils. Although the anti-parallel β-hairpin is a common intermediate on the pathway to Aβ fibrils for the four peptides studied, the rate of conversion to cross-β-sheet fibril structure differs for each.


2021 ◽  
Author(s):  
Liang Sun ◽  
Hong-Jun Cho ◽  
Soumyo Sen ◽  
Andres S. Arango ◽  
Truc T. Huynh ◽  
...  

Alzheimer’s Diseases (AD) is the most common neurodegenerative disease, but efficient therapeutic and early diagnosis agents for this neurological disorder are still lacking. <a>Herein, we report the development of a novel amphiphilic compound, LS-4, generated linking a hydrophobic amyloid fibril-binding fragment with a hydrophilic azamacrocycle that can dramatically increase the binding affinity towards various amyloid β (Aβ) peptide aggregates. The developed compound exhibits uncommon fluorescence turn-on and high binding affinity for Aβ aggregates, especially for soluble Aβ oligomers. Moreover, upon the administration of LS-4 to 5xFAD mice, fluorescence imaging of the LS-4-treated brain sections reveals that LS-4 can readily penetrate the blood-brain-barrier (BBB) and bind to the Aβ oligomers <i>in vivo</i>, as confirmed by immunostaining with an Aβ oligomer-specific antibody. In addition, the treatment of 5xFAD mice with LS-4 significantly reduces the amount of both amyloid plaques and associated phosphorylated tau (p-tau) aggregates vs. the vehicle-treated 5xFAD mice, while microglia activation is also reduced. Furthermore, molecular dynamics simulations corroborate the observation that introducing a hydrophilic moiety into the molecular structure can significantly enhance the electrostatic interactions with the polar residues of the Aβ peptide species. Finally, taking advantage of the strong Cu-chelating property of the azamacrocycle, we performed a series of radioimaging and biodistribution studies that show the <sup>64</sup>Cu-LS-4 complex binds to the amyloid plaques and can accumulate a significantly larger extent in the 5xFAD mice brains vs. the WT controls. Overall, these <i>in vitro</i> and <i>in vivo</i> studies illustrate that the novel strategy to employ an amphiphilic molecule containing a hydrophilic fragment attached to a hydrophobic amyloid fibril-binding fragment </a><a>can increase the binding affinity of these compounds for the soluble Aβ oligomers and can thus be used </a>to detect and regulate the soluble Aβ species in AD.


2021 ◽  
Author(s):  
Liang Sun ◽  
Hong-Jun Cho ◽  
Soumyo Sen ◽  
Andres S. Arango ◽  
Truc T. Huynh ◽  
...  

Alzheimer’s Diseases (AD) is the most common neurodegenerative disease, but efficient therapeutic and early diagnosis agents for this neurological disorder are still lacking. <a>Herein, we report the development of a novel amphiphilic compound, LS-4, generated linking a hydrophobic amyloid fibril-binding fragment with a hydrophilic azamacrocycle that can dramatically increase the binding affinity towards various amyloid β (Aβ) peptide aggregates. The developed compound exhibits uncommon fluorescence turn-on and high binding affinity for Aβ aggregates, especially for soluble Aβ oligomers. Moreover, upon the administration of LS-4 to 5xFAD mice, fluorescence imaging of the LS-4-treated brain sections reveals that LS-4 can readily penetrate the blood-brain-barrier (BBB) and bind to the Aβ oligomers <i>in vivo</i>, as confirmed by immunostaining with an Aβ oligomer-specific antibody. In addition, the treatment of 5xFAD mice with LS-4 significantly reduces the amount of both amyloid plaques and associated phosphorylated tau (p-tau) aggregates vs. the vehicle-treated 5xFAD mice, while microglia activation is also reduced. Furthermore, molecular dynamics simulations corroborate the observation that introducing a hydrophilic moiety into the molecular structure can significantly enhance the electrostatic interactions with the polar residues of the Aβ peptide species. Finally, taking advantage of the strong Cu-chelating property of the azamacrocycle, we performed a series of radioimaging and biodistribution studies that show the <sup>64</sup>Cu-LS-4 complex binds to the amyloid plaques and can accumulate a significantly larger extent in the 5xFAD mice brains vs. the WT controls. Overall, these <i>in vitro</i> and <i>in vivo</i> studies illustrate that the novel strategy to employ an amphiphilic molecule containing a hydrophilic fragment attached to a hydrophobic amyloid fibril-binding fragment </a><a>can increase the binding affinity of these compounds for the soluble Aβ oligomers and can thus be used </a>to detect and regulate the soluble Aβ species in AD.


2021 ◽  
Author(s):  
Elina Berntsson ◽  
Suman Paul ◽  
Sabrina B. Sholts ◽  
Jüri Jarvet ◽  
Andreas Barth ◽  
...  

AbstractAlzheimer’s disease (AD) is the most prevalent age-related cause of dementia. AD affects millions of people worldwide, and to date there is no cure. The pathological hallmark of AD brains is deposition of amyloid plaques, which mainly consist of amyloid-β (Aβ) peptides, commonly 40 or 42 residues long, that have aggregated into amyloid fibrils. Intermediate aggregates in the form of soluble Aβ oligomers appear to be highly neurotoxic. Cell and animal studies have previously demonstrated positive effects of the molecule 6-gingerol on AD pathology. Gingerols are the main active constituents of the ginger root, which in many cultures is a traditional nutritional supplement for memory enhancement. Here, we use biophysical experiments to characterize in vitro interactions between 6-gingerol and Aβ40 peptides. Our experiments with atomic force microscopy imaging, and nuclear magnetic resonance and Thioflavin-T fluorescence spectroscopy, show that the hydrophobic 6-gingerol molecule interferes with formation of Aβ40 aggregates, but does not interact with Aβ40 monomers. Thus, together with its favourable toxicity profile, 6-gingerol appears to display many of the desired properties of an anti-AD compound.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243041
Author(s):  
DaWon Kim ◽  
Jeong Hwa Lee ◽  
Hye Yun Kim ◽  
Jisu Shin ◽  
Kyeonghwan Kim ◽  
...  

Alzheimer disease (AD) is a neurodegenerative disorder characterized by the aberrant production and accumulation of amyloid-β (Aβ) peptides in the brain. Accumulated Aβ in soluble oligomer and insoluble plaque forms are considered to be a pathological culprit and biomarker of the disorder. Here, we report a fluorescent universal Aβ-indicator YI-13, 5-(4-fluorobenzoyl)-7,8-dihydropyrrolo[1,2-b]isoquinolin-9(6H)-one, which detects Aβ monomers, dimers, and plaques. We synthesized a library of 26 fluorescence chemicals with the indolizine core and screen them through a series of in vitro tests utilizing Aβ as a target and YI-13 was selected as the final imaging candidate. YI-13 was found to stain and visualize insoluble Aβ plaques in the brain tissue, of a transgenic mouse model with five familial AD mutations (5XFAD), by a histochemical approach and to label soluble Aβ oligomers within brain lysates of the mouse model under a fluorescence plate reader. Among oligomers aggregated from monomers and synthetic dimers from chemically conjugated monomers, YI-13 preferred the dimeric Aβ.


Sign in / Sign up

Export Citation Format

Share Document