scholarly journals Formulation, Development, and In Vitro Evaluation of a CD22 Targeted Liposomal System Containing a Non-Cardiotoxic Anthracycline for B Cell Malignancies

Pharmaceutics ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 50 ◽  
Author(s):  
Nivesh Mittal ◽  
Bivash Mandal ◽  
Pavan Balabathula ◽  
Saini Setua ◽  
Dileep Janagam ◽  
...  
2017 ◽  
Vol 5 (2) ◽  
pp. 26-44
Author(s):  
Vageesh N.M ◽  
◽  
Sri Sura Ramya ◽  
Begum K Gulijar ◽  
Swathi B ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Guang Yang ◽  
Jinhua Wang ◽  
Li Tan ◽  
Manit Munshi ◽  
Xia Liu ◽  
...  

Activating mutations in MYD88 promote malignant cell growth and survival through HCK mediated BTK activation. Ibrutinib binds to BTKCys481 and is active in B-cell malignancies driven by mutated MYD88. Mutations in BTKCys481 particularly BTKCys481Ser are common in patients with acquired ibrutinib resistance. We therefore performed an extensive medicinal chemistry campaign and identified KIN-8194 as a novel dual inhibitor of HCK and BTK. KIN-8194 showed potent and selective in vitro killing of MYD88 mutated lymphoma cells, including ibrutinib resistant BTKCys481Ser expressing cells. KIN-8194 demonstrated excellent bioavailability and pharmacokinetic parameters, with good tolerance in rodent models at pharmacologically achievable and active doses. Pharmacodynamic studies showed sustained HCK and BTK inhibition for 24 hours following single oral administration of KIN-8194 in MYD88 mutated TMD-8 ABC DLBCL xenografted mice with either wild-type BTK (BTKWT) or BTKCys481Ser expressing tumors. KIN-8194 showed superior survival benefit over ibrutinib in both BTKWT and BTKCys481Ser expressing TMD-8 DLBCL xenografted mice, including sustained complete responses >12 weeks off treatment in mice with BTKWT expressing TMD-8 tumors. The Bcl-2 inhibitor venetoclax enhanced the anti-tumor activity of KIN-8194 in BTKWT and BTKCys481Ser expressing MYD88 mutated lymphoma cells, and markedly reduced tumor growth and prolonged survival in mice with BTKCys481Ser expressing TMD-8 tumors treated with both drugs. The findings highlight the feasibility of targeting HCK, a key driver of mutated MYD88 pro-survival signaling, and provide a framework for the advancement of KIN-8194 for human studies in B-cell malignancies driven by HCK and BTK.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4437-4447 ◽  
Author(s):  
Jason L. Hornick ◽  
Leslie A. Khawli ◽  
Peisheng Hu ◽  
Maureen Lynch ◽  
Peter M. Anderson ◽  
...  

Abstract Although monoclonal antibody (MoAb) therapy of the human malignant lymphomas has shown success in clinical trials, its full potential for the treatment of hematologic malignancies has yet to be realized. To expand the clinical potential of a promising human-mouse chimeric antihuman B-cell MoAb (chCLL-1) constructed using the variable domains cloned from the murine Lym-2 (muLym-2) hybridoma, fusion proteins containing granulocyte-macrophage colony-stimulating factor (GM-CSF) (chCLL-1/GM–CSF) or interleukin (IL)-2 (chCLL-1/IL–2) were generated and evaluated for in vitro cytotoxicity and in vivo tumor targeting. The glutamine synthetase gene amplification system was employed for high level expression of the recombinant fusion proteins. Antigenic specificity was confirmed by a competition radioimmunoassay against ARH-77 human myeloma cells. The activity of chCLL-1/GM–CSF was established by a colony formation assay, and the bioactivity of chCLL-1/IL–2 was confirmed by supporting the growth of an IL-2–dependent T-cell line. Antibody-dependent cellular cytotoxicity against ARH-77 target cells demonstrated that both fusion proteins mediate enhanced tumor cell lysis by human mononuclear cells. Finally, biodistribution and imaging studies in nude mice bearing ARH-77 xenografts indicated that the fusion proteins specifically target the tumors. These in vitro and in vivo data suggest that chCLL-1/GM–CSF and chCLL-1/IL–2 have potential as immunotherapeutic reagents for the treatment of B-cell malignancies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3931-3931 ◽  
Author(s):  
Paul A. Algate ◽  
Jennifer Wiens ◽  
Christy Nilsson ◽  
Mien Sho ◽  
Debra T. Chao ◽  
...  

Abstract Abstract 3931 Background: CD37 is a 50–55 kDa heavily glycosylated member of the tetraspanin superfamily of molecules. This cell surface protein is expressed on normal and transformed B-cells, and has been implicated in diverse processes including cellular activation and proliferation, cell motility, and cell-cell adhesion. TRU-016 is a novel humanized anti-CD37 SMIP™ protein. Pre-clinical studies have demonstrated that anti-CD37 SMIP™ protein mediates caspase-independent direct killing of normal and malignant B-cells, a mechanism of action that appears to be different than CD20 therapies. In addition, TRU-016 results in indirect killing through NK cell mediated SMIP-protein directed cellular cytotoxicity (SDCC). The therapeutic potential of TRU-016 against several subsets of B-cell malignancies is currently being investigated in the clinic. Methods: The ability of TRU-016 to interact and increase cell killing with established therapeutics rituximab (anti-CD20 antibody), bendamustine (bi-functional alkylating agent/nucleoside analog), LY294002 (PI3K inhibitor) and temsirolimus (mTOR inhibitor) was investigated in vitro using the Rec-1 (mantle cell lymphoma) and SU-DHL-6 (diffuse large B cell lymphoma) cell lines. Individual drugs were tested in combination with TRU-016 as well as in a multiple drug cocktail. Combination index analyses were performed for drug combinations over the 20–90% effect levels. To determine whether in vitro synergy could be recapitulated in vivo, DoHH-2 (follicular lymphoma) xenografts were treated with TRU-016, bendamustine, and the combination of TRU-016 and bendamustine with or without rituximab. Furthermore, the effect of the dosing schedule with the combination of TRU-016 and rituximab was explored by comparing the treatment over a short time period to an extended (maintenance) dosing regimen. CD37 expression on the tumor xenografts was evaluated post different treatment by immunohistochemistry. Results: Combination index analyses determined that the killing effects of TRU-016 was synergistic with rituximab, bendamustine and temsirolimus in NHL models. Furthermore, TRU-016 provided additional efficacy when added to the combination of rituximab and bendamustine. In vivo results demonstrated that the in vitro synergy results were applicable to a more complex in vivo disease model. The combination of TRU-016 with bendamustine or rituximab resulted in increased tumor growth delay compared to that attained with the individual drugs. The addition of TRU-016 to the combination of bendamustine and rituximab resulted in increased tumor growth delay compared to the two drugs alone. The observed efficacy of the combination of TRU-016 and rituximab could be extended with repeated (maintenance) dosing with tumor free survival being observed beyond the 35 days of dosing. The combination of TRU-016 with temsirolimus also resulted in a reduction of tumor growth compared to either molecule alone. CD37 target expression was detected in the xenograft tumors post-treatment with all drugs tested. Conclusions: TRU-016 in combination with rituximab, bendamustine or temsirolimus increased cell killing of NHL cells in vitro over that observed for each agent alone. Furthermore, the triple combination of TRU-016 with rituximab, bendamustine or temsirolimus displayed greater anti-tumor activity in vivo than each of the agents alone against a follicular lymphoma tumor model. The addition of TRU-016 to a combination of rituximab and bendamustine resulted in increased killing in vitro and in vivo. The combinatorial activity of TRU-016 and rituximab in vivo was increased when the drugs were administered over a longer period. These results provide preclinical rationale for the potential different combinations of TRU-016 with several established therapeutics for the treatment of NHL and related B-cell malignancies. Disclosures: Algate: Trubion Pharmaceuticals: Employment. Wiens:Trubion Pharmaceuticals: Employment. Nilsson:Trubion Pharmaceuticals: Employment. Sho:Facet/Abbott: Employment. Chao:Facet/Abbott: Employment. Starling:Facet/Abbott: Employment. Gordon:Trubion Pharmaceuticals: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3726-3726
Author(s):  
Jutta Deckert ◽  
Sharon Chicklas ◽  
Yong Yi ◽  
Min Li ◽  
Jan Pinkas ◽  
...  

Abstract Abstract 3726 CD37 is a B-cell surface antigen which is widely expressed on malignant B cells in non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). In normal tissues CD37 expression is limited to blood cells and lymphoid tissues. This restricted expression profile makes CD37 an attractive therapeutic target for antibodies and antibody-drug conjugates. We developed a novel anti-CD37 antibody, K7153A, which provides a unique combination of functional properties: it demonstrated strong pro-apoptotic and direct cell killing activity against NHL cell lines and could mediate effector activity such as CDC and ADCC. The antibody-maytansinoid conjugate, IMGN529, was produced by conjugation of K7153A with the potent maytansinoid, DM1, via the non-cleavable linker, SMCC. The direct cytotoxic potency of the K7153A antibody was superior to that of the CD20-directed rituximab and was further enhanced with maytansinoid conjugation in IMGN529. In vivo, IMGN529 demonstrated better anti-tumor activity than the K7153A antibody in established subcutaneous follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and CLL xenograft models in SCID mice. A single administration of IMGN529 showed similar or improved efficacy compared to anti-CD20 antibodies or standard chemotherapy where tested. Immunohistochemical (IHC) staining of formalin fixed paraffin-embedded (FFPE) NHL tissue sections was performed to evaluate CD37 expression. CD37 exhibited a similar prevalence to CD20 in subtypes of NHL such as FL, DLBCL, Burkitt's lymphoma (BL) and mantle cell lymphoma (MCL). B-cell depletion is an important measure of efficacy for targeted therapies, such as CD20-directed antibodies, in B-cell malignancies. CD37 expression in blood cells from healthy human donors was measured by quantitative flow cytometry in comparison to CD20. The greatest CD37 expression was found in B cells at approximately 77,000 antibodies bound per cell (ABC), which was similar to CD20 expression in B cells at 95,000 ABC. In other blood cell types CD37 staining was seen at low levels, about 2,000 – 5,000 ABC, in monocytes, NK cells and T cells. In vitro depletion experiments were performed with purified peripheral blood mononuclear cells (PBMCs) and with whole blood, both derived from several healthy donors. Cells were incubated for 1 hr with 10 μg/mL of either K7153A, IMGN529, CD37-targeting TRU-016, rituximab or the anti-CD52 antibody alemtuzumab, with cell depletion determined relative to counting beads by flow cytometry. The K7153A antibody and the IMGN529 conjugate efficiently and specifically depleted B-cells in a dose-dependent manner in the context of purified PBMCs and whole blood. With purified PBMCs, both K7153A and IMGN529 caused 50–60% depletion of B cells, with little to no depletion of T cells or monocytes. IMGN529 was more potent than rituximab, which led to 30–40% B-cell depletion, or TRU-016, which caused 20–30% B-cell depletion. IMGN529 also was more specific than alemtuzumab, which depleted T-cells and monocytes as well as B cells. With whole blood samples, both K7153A and IMGN529 resulted in 30–40% B-cell depletion with no effect on T cells, NK cells or monocytes. IMGN529 was again more potent than rituximab or TRU-016, which caused approximately 10% B-cell depletion, and was more specific than alemtuzumab, which depleted the majority of T cells in addition to 40% of B cells. IMGN529 embodies a unique B-cell targeted agent as it combines the intrinsic pro-apoptotic, CDC and ADCC activities of its anti-CD37 antibody component with the potent cytotoxic mechanism provided by the targeted delivery of its maytansinoid payload. It is highly active in vitro and in vivo against B-cell lymphoma and CLL cell lines. In addition, it mediates specific B-cell depletion in vitro that is greater than B-cell depletion by CD20-directed rituximab. Together, these findings indicate that IMGN529 is a promising therapeutic candidate for the treatment of B-cell malignancies. Disclosures: Deckert: ImmunoGen, Inc.: Employment. Chicklas:ImmunoGen, Inc.: Employment. Yi:ImmunoGen, Inc.: Employment. Li:ImmunoGen, Inc.: Employment. Pinkas:ImmunoGen, Inc.: Employment. Chittenden:ImmunoGen, Inc.: Employment. Lutz:ImmunoGen, Inc.: Employment. Park:ImmunoGen, Inc.: Employment.


Sign in / Sign up

Export Citation Format

Share Document