scholarly journals C60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells

Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 586 ◽  
Author(s):  
Anna Grebinyk ◽  
Svitlana Prylutska ◽  
Anatoliy Buchelnikov ◽  
Nina Tverdokhleb ◽  
Sergii Grebinyk ◽  
...  

A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV–Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.

2020 ◽  
Vol 20 (15) ◽  
pp. 1857-1872
Author(s):  
Alberto M. Muñoz ◽  
Manuel J. Fragoso-Vázquez ◽  
Berenice P. Martel ◽  
Alma Chávez-Blanco ◽  
Alfonso Dueñas-González ◽  
...  

Background: Our research group has developed some Valproic Acid (VPA) derivatives employed as anti-proliferative compounds targeting the HDAC8 enzyme. However, some of these compounds are poorly soluble in water. Objective: Employed the four generations of Polyamidoamine (G4 PAMAM) dendrimers as drug carriers of these compounds to increase their water solubility for further in vitro evaluation. Methods: VPA derivatives were subjected to Docking and Molecular Dynamics (MD) simulations to evaluate their affinity on G4 PAMAM. Then, HPLC-UV/VIS, 1H NMR, MALDI-TOF and atomic force microscopy were employed to establish the formation of the drug-G4 PAMAM complexes. Results: The docking results showed that the amide groups of VPA derivatives make polar interactions with G4 PAMAM, whereas MD simulations corroborated the stability of the complexes. HPLC UV/VIS experiments showed an increase in the drug water solubility which was found to be directly proportional to the amount of G4 PAMAM. 1H NMR showed a disappearance of the proton amine group signals, correlating with docking results. MALDI-TOF and atomic force microscopy suggested the drug-G4 PAMAM dendrimer complexes formation. Discussion: In vitro studies showed that G4 PAMAM has toxicity in the micromolar concentration in MDAMB- 231, MCF7, and 3T3-L1 cell lines. VPA CF-G4 PAMAM dendrimer complex showed anti-proliferative properties in the micromolar concentration in MCF-7 and 3T3-L1, and in the milimolar concentration in MDAMB- 231, whereas VPA MF-G4 PAMAM dendrimer complex didn’t show effects on the three cell lines employed. Conclusion: These results demonstrate that G4 PAMAM dendrimers are capableof transporting poorly watersoluble aryl-VPA derivate compounds to increase its cytotoxic activity against neoplastic cell lines.


2017 ◽  
Vol 89 (9) ◽  
pp. 1305-1320 ◽  
Author(s):  
Ana M. Matos ◽  
Joana S. Cristóvão ◽  
Dmitry V. Yashunsky ◽  
Nikolay E. Nifantiev ◽  
Ana S. Viana ◽  
...  

AbstractDietary flavonoids and synthetic derivatives have a well-known potential for biomedical applications. In this perspective, we report herein new methodologies to access chrysin and 5,7-dihydroxychromone, and these structures were combined with those of naturally occurring quercetin, luteolin, (+)-dihydroquercetin and apigenin to assemble a set of polyphenols with structure variations for in vitro testing over the aggregation of Alzheimer’s disease (AD) amyloid peptide Aβ1−42. Using thioflavin-T (ThT) monitored kinetics and subsequent mechanistic analysis by curve fitting, we show that catechol-type flavonoids reduce Aβ1−42 fibril content by 30% at molar ratios over 10. Without affecting secondary nucleation, these compounds accelerate primary nucleation events responsible for early primary oligomer formation, putatively redirecting the latter into off-pathway aggregates. Atomic force microscopy (AFM) imaging of reaction end-points allowed a comprehensive topographical analysis of amyloid aggregate populations formed in the presence of each compound. Formation of Aβ1−42 small oligomers, regarded as the most toxic amyloid structures, seems to be limited by flavonoids with a C2 phenyl group, while flavonol 3-OH is not a beneficial structural feature. Overall, the diversity of structural variations within flavonoids opens avenues for their development as chemical tools in the treatment of AD by tackling the formation and distribution of neurotoxic oligomers species.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Andrada Serafim ◽  
Romain Mallet ◽  
Florence Pascaretti-Grizon ◽  
Izabela-Cristina Stancu ◽  
Daniel Chappard

Scaffolds of nonresorbable biomaterials can represent an interesting alternative for replacing large bone defects in some particular clinical cases with massive bone loss. Poly(styrene) microfibers were prepared by a dry spinning method. They were partially melted to provide 3D porous scaffolds. The quality of the material was assessed by Raman spectroscopy. Surface roughness was determined by atomic force microscopy and vertical interference microscopy. Saos-2 osteoblast-like cells were seeded on the surface of the fibers and left to proliferate. Cell morphology, evaluated by scanning electron microscopy, revealed that they can spread and elongate on the rough microfiber surface. Porous 3D scaffolds made of nonresorbable poly(styrene) fibers are cytocompatible biomaterials mimicking allogenic bone trabeculae and allowing the growth and development of osteoblast-like cellsin vitro.


2018 ◽  
Vol 2 (2) ◽  
pp. 14-17
Author(s):  
Zhuola Zhuola ◽  
Steve Barrett ◽  
Yalda Ashraf Kharaz ◽  
Riaz Akhtar

The mechanical properties of ocular tissues, such as the sclera, have a major impact on healthy eye function, and are governed by the properties and composition of the microstructural components. For example, biomechanical degradation associated with myopia occurs alongside a reduction of proteoglycans (PGs). In this study, the role of PG degradation in the nanomechanical properties of the porcine sclera is explored. In-vitro enzymatic degradation of PGs was conducted with α-amylase and chondroitinase ABC enzymes. Collagen fibril morphology and nanomechanical stiffness were measured with atomic force microscopy (AFM). The elastic modulus of the tissue was reduced in all enzyme-treated samples relative to controls. In addition, collagen fibril organization was disrupted by PG depletion. Our data demonstrate that PGs play an important role in determining not only the mechanical properties at these length scales, but also collagen fibril arrangement.


2001 ◽  
Vol 82 (6) ◽  
pp. 1503-1508 ◽  
Author(s):  
O. I. Kiselyova ◽  
I. V. Yaminsky ◽  
E. M. Karger ◽  
O. Yu. Frolova ◽  
Y. L. Dorokhov ◽  
...  

The structure of complexes formed in vitro by tobacco mosaic virus (TMV)-coded movement protein (MP) with TMV RNA and short (890 nt) synthetic RNA transcripts was visualized by atomic force microscopy on a mica surface. MP molecules were found to be distributed along the chain of RNA and the structure of MP–RNA complexes depended on the molar MP:RNA ratios at which the complexes were formed. A rise in the molar MP:TMV RNA ratio from 20:1 to 60–100:1 resulted in an increase in the density of the MP packaging on TMV RNA and structural conversion of complexes from RNase-sensitive ‘beads-on-a-string’ into a ‘thick string’ form that was partly resistant to RNase. The ‘thick string’-type RNase-resistant complexes were also produced by short synthetic RNA transcripts at different MP:RNA ratios. The ‘thick string’ complexes are suggested to represent clusters of MP molecules cooperatively bound to discrete regions of TMV RNA and separated by protein-free RNA segments.


2021 ◽  
Author(s):  
Kazuto Yoshimi ◽  
Kohei TAKESHITA ◽  
Noriyuki Kodera ◽  
Satomi Shibumura ◽  
Yuko Yamauchi ◽  
...  

Type I CRISPR-Cas3 uses an RNA-guided multi Cas-protein complex, Cascade, which detects and degrades foreign nucleic acids via the helicase-nuclease Cas3 protein. Despite many studies using cryoEM and smFRET, the precise mechanism of Cas3-mediated cleavage and degradation of target DNA remains elusive. Here we reconstitute the CRISPR-Cas3 system in vitro to show how the Escherichia coli Cas3 (EcoCas3) with EcoCascade exhibits collateral non-specific ssDNA cleavage and target specific DNA degradation. Partial binding of EcoCascade to target DNA with tolerated mismatches within the spacer sequence, but not the PAM, elicits collateral ssDNA cleavage activity of recruited EcoCas3. Conversely, stable binding with complete R-loop formation drives EcoCas3 to nick the non-target strand (NTS) in the bound DNA. Helicase-dependent unwinding then combines with trans ssDNA cleavage of the target strand and repetitive cis cleavage of the NTS to degrade the target dsDNA substrate. High-speed atomic force microscopy demonstrates that EcoCas3 bound to EcoCascade repeatedly reels and releases the target DNA, followed by target fragmentation. Together, these results provide a revised model for collateral ssDNA cleavage and target dsDNA degradation by CRISPR-Cas3, furthering understanding of type I CRISPR priming and interference and informing future genome editing tools.


2018 ◽  
Vol 15 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Baghdad Science Journal

Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).


Sign in / Sign up

Export Citation Format

Share Document