scholarly journals Optical, Structural and Electrical Properties of Electrochemical Synthesis of Thin Film of Polyaniline

2018 ◽  
Vol 15 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Baghdad Science Journal

Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).

1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 717-720 ◽  
pp. 849-852
Author(s):  
Jung Ho Lee ◽  
Ji Hong Kim ◽  
Kang Min Do ◽  
Byung Moo Moon ◽  
Sung Jae Joo ◽  
...  

The characteristics of Ga-doped zinc oxide (GaZnO) thin films deposited at different substrate temperatures (TS~250 to 550oC) on 4H-SiC have been investigated. Structural and electrical properties of GaZnO thin film on n-type 4H-SiC (100)were investigated by using x-ray diffraction, atomic force microscopy (AFM), Hall effect measurement, and Auger electron spectroscopy (AES). Hall mobility is found to increase as the substrate temperature increase from 250 to 550 oC, whereas the lowest resistivity (~3.3 x 10-4 Ωcm) and highest carrier concentration (~1.33x1021cm-3) values are observed for the GaZnO films deposited at 400 oC. It has been found that the c-axis oriented crystalline quality as well as the relative amount of activated Ga3+ Introduction ions may affect the electrical properties of GaZnO films on SiC.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 935-958
Author(s):  
Pooja Sharma ◽  
Anji Chen ◽  
Dan Wang ◽  
Guijun Wang

Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new triazole containing glycoconjugates in different solvents were analyzed. Several glucose derivatives were found to be effective LMWGs, with compound 7a forming gels in a variety of organic solvents as well as in the presence of metal ions in aqueous solutions. The organogels formed by several compounds were characterized using optical microscopy, atomic force microscopy (AFM) and UV-vis spectroscopy, etc. The co-gels formed by compound 7a with the Fmoc derivative 7i showed interesting fluorescence enhancement upon gelation. Several gelators were also characterized using powder X-ray diffraction and FT-IR spectroscopy. The potential applications of these sugar-based gelators for drug delivery and dye removal were also studied.


2014 ◽  
Vol 28 (16) ◽  
pp. 1450102 ◽  
Author(s):  
Ali Bahari ◽  
Masoud Ebrahimzadeh ◽  
Reza Gholipur

A synthetic process for the formation of Zr x Y 1-x O y nanostructures is demonstrated by the reaction of yttrium nitrate hexahydrate with zirconium propoxide. The reactions are carried out at temperature 60°C and pressure 0.1 MPa. The energy dispersive X-ray (EDX) spectroscopy measurements confirm formation of Zr x Y 1-x O y nanostructures and the presence of carbonate and hydroxide species which are removed after high temperature anneals. It was found that the oxygen pressure during synthesis plays a determinant role on the structural properties of the nanostructure. This effect is further studied by atomic force microscopy (AFM) measurements and scanning electron microscope (SEM), which showed the formation of an isotopically organized structure. X-ray diffraction (XRD) measurement reveals that these changes in the nanostructural efficiency are associated with structural and compositional changes among the substrate. The dielectric constant as measured by the capacitance–voltage (C–V) technique is estimated to be around 39.05. C–V measurements taken at 1 MHz show the maximum capacitance for the Zr 0.05 Y 0.95 O y film. The leakage current densities were below 10-5 A/cm2 for the Zr 0.05 Y 0.95 O y film.


Author(s):  
Victor Ibarra ◽  
Demetrio Mendoza ◽  
Alma Sanchez ◽  
Rosa Vazquez ◽  
Karina Aleman ◽  
...  

Graphene oxide was synthesized by a one-step environmentally friendly mechanochemistry process directly from graphite and characterized by Raman, FT-IR and UV/vis spectroscopies, Atomic Force Microscopy, X-ray Diffraction, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy and Thermogravimetric Analysis. Spectroscopic analysis shows that the functional groups and oxygen content of the synthesized material are comparable with those of graphene oxide synthesized by other previously reported methods (Hummers). Thermogravimetric analysis reveals thermal stability up to 400 °C.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


2014 ◽  
Vol 1025-1026 ◽  
pp. 427-431
Author(s):  
Ping Gao ◽  
Wei Zhang ◽  
Wei Tian Wang

Orthorhombic HoMnO3 films were prepared epitaxially on Nb-doped SrTiO3 single crystal substrates by using pulsed laser deposition technique. The films showed perfectly a-axis crystallographic orientations. X-ray diffraction and atomic force microscopy were used to characterize the films. The complex dielectric properties were measured as functions of frequency (40 Hz~1 MHz) and temperature (80 K~300 K) with a signal amplitude of 50 mv. The respective dielectric relaxation peaks shifted to higher frequency as the measuring temperature increased, with the same development of real part of the complex permittivity. The cole-cole diagram was obtained according to the Debye model, and the effects of relaxation process were discussed.


2005 ◽  
Vol 106 ◽  
pp. 117-122 ◽  
Author(s):  
Izabela Szafraniak ◽  
Dietrich Hesse ◽  
Marin Alexe

Self-patterning presents an appealing alternative to lithography for the production of arrays of nanoscale ferroelectric capacitors for use in high density non-volatile memory devices. Recently a self-patterning method, based on the use of the instability of ultrathin films during hightemperature treatments, was used to fabricate nanosized ferroelectrics. This paper reports the use of the method for the preparation of PZT nanoislands on different single crystalline substrates - SrTiO3, MgO and LaAlO3. Moreover, a multi-step deposition procedure in order to control lateral the dimension of the crystals was introduced. The nanostructures obtained were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document