scholarly journals Recombinant Peptide Production Platform Coupled with Site-Specific Albumin Conjugation Enables a Convenient Production of Long-Acting Therapeutic Peptide

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 364 ◽  
Author(s):  
Mijeong Bak ◽  
Junyong Park ◽  
Kiyoon Min ◽  
Jinhwan Cho ◽  
Jihyoun Seong ◽  
...  

The number of therapeutic peptides for human treatment is growing rapidly. However, their development faces two major issues: the poor yield of large peptides from conventional solid-phase synthesis, and the intrinsically short serum half-life of peptides. To address these issues, we investigated a platform for the production of a recombinant therapeutic peptide with an extended serum half-life involving the site-specific conjugation of human serum albumin (HSA). HSA has an exceptionally long serum half-life and can be used to extend the serum half-lives of therapeutic proteins and peptides. We used glucagon-like-peptide 1 (GLP-1) as a model peptide in the present study. A “clickable” non-natural amino acid—p-azido-l-phenylalanine (AzF)—was incorporated into three specific sites (V16, Y19, and F28) of a GLP-1 variant, followed by conjugation with HSA through strain-promoted azide–alkyne cycloaddition. All three HSA-conjugated GLP-1 variants (GLP1_16HSA, GLP1_19HSA, and GLP1_28HSA) exhibited comparable serum half-lives in vivo. However, the three GLP1_HSA variants had different in vitro biological activities and in vivo glucose-lowering effects, demonstrating the importance of site-specific HSA conjugation. The platform described herein could be used to develop other therapeutic peptides with extended serum half-lives.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1165-1165
Author(s):  
Jamie M O'Sullivan ◽  
Judicael Fazavana ◽  
Alain Chan ◽  
Niamh Cooke ◽  
Virginie Terraube ◽  
...  

Abstract Introduction Deficiencies of both von Willebrand Factor (VWF) and FVIII are associated with significant bleeding phenotypes. Consequently, patients with VWD or hemophilia A commonly require replacement therapy with coagulation factor concentrates. However, as infused VWF and FVIII have relatively short plasma half-lives, patient therapy generally necessitates frequent re-dosing. Development of a long-acting rVWF therapy thus represents an important unmet clinical need. We and others have previously demonstrated that the A1A2A3 domains of VWF play a critical role in regulating macrophage-mediated clearance of VWF in vivo. Importantly, crystal structures of the A-domains have also well characterized. In this study, we sought to utilize this data to investigate the hypothesis that site-specific PEGylation within the A1A2A3 domains could be used as a novel strategy to inhibit macrophage-mediated clearance, and thereby inform development of a rVWF molecule with extended plasma half-life. Methodology Site-directed mutagenesis was used to engineer novel surface cysteine residues at selected sites within A1A2A3-VWF. Following purification and characterization, individual A1A2A3 cysteine variants were PEGylated using 40kDa PEG maleimide. Clearance of unPEGylated and PEGylated A1A2A3 variants were assessed in VWF-/- mice. VWF-macrophage interactions were quantified in vitro using differentiated THP-1 macrophages. VWF binding to LRP1 clearance receptor was assessed using both immunosorbant assays and Surface Plasmon Resonance. Results Novel single cysteine residues were introduced at stringently selected sites within A1A2A3-VWF. These sites spanned all 3 A-domains and included; S1286C, Q1353C, M1545C, L1591C, V1636C, Q1652C, V1803C and S1807C. Interestingly, the introduction of these novel cysteine residues in both the A1 and A3 domains of VWF did not alter the rate of VWF clearance compared to WT A1A2A3-VWF. Conversely however, the A2 domain was less tolerant for the insertion of cysteines, with L1591C and V1636C variants demonstrating a significantly reduced VWF plasma half-life of approx. 1.5 fold versus WT-A1A2A3 (p<0.05). Subsequently, the engineered cysteine residues were modified by covalent attachment of a 40kDa branched PEG molecule. All variants achieved greater than 80% PEG conjugation efficiency, except V1636C which was eliminated from further study. Remarkably, PEG conjugation displayed site-specific effects on the in vivo half-life of A1A2A3-VWF. For example, PEGylation at S1286C within the A1 domain resulted in a marked increased in VWF half-life compared to WT-A1A2A3 VWF (92.4±6 vs 18.3±0.9 mins, respectively, p<0.001). Conversely, PEGylation at the adjacent site in the A1 domain, Q1353C, or downstream at M1545C within A2 had no significant effect on VWF half-life (23.3±1 and 20.8±3 mins, respectively). Interestingly, despite the fact that no previous roles have been described for the A3 domain of VWF in regulating its clearance, we observed a significant extension in VWF half-life for PEGylated variants within the A3 domain, V1803C and S1807C, (93.3±9 mins and 58.0±5 mins, respectively, p<0.05). Macrophage LDL receptor related protein 1 (LRP1) has been implicated as key cellular mediator of VWF clearance in vivo. Interestingly, in keeping with the reduced clearance observed for PEGylated VWF variants S1286C, V1803C and S1807C, binding of these variants to clearance receptor LRP1 cluster II and IV was ablated. Conversely, PEGylated variants which failed to extend VWF half-life (Q1353C and M1545C) displayed LRP1 binding that was comparable to WT-A1A2A3 VWF. Interestingly, PEGylation at specific sites in A2 (L1591C and Q1652C) which served to increased VWF half-life displayed normal binding to LRP1 cluster IV. However, binding of these variants to LRP1 cluster II was reduced by 90% compared to WT-A1A2A3. Conclusion Collectively, our novel data demonstrate that cysteine-directed PEGylation at specific sites within the A1 (S1286C), A2 (L1591C, Q1652C) and A3 (V1803C and S1807C) domains of A1A2A3-VWF inhibits binding to macrophage clearance receptor LRP1 in vitro. Consequently, these PEGylated A1A2A3-VWF variants demonstrate an extended circulatory half-life in vivo compared to wild type A1A2A3-VWF. Taken together, these results support the use of site-specific PEGylation as a potential approach to develop long-acting full length rVWF molecules. Disclosures Cooke: Pfizer: Employment. Terraube:Pfizer: Employment. Cohen:Pfizer: Employment. Pittman:Pfizer: Employment. Cunningham:Pfizer: Employment. Lambert:Pfizer: Employment. O'Donnell:Pfizer: Consultancy, Research Funding; Daiichi Sankyo: Consultancy; CSL Behring: Consultancy; Octapharma: Speakers Bureau; Leo Pharma: Speakers Bureau; Novo Nordisk: Research Funding, Speakers Bureau; Bayer: Research Funding, Speakers Bureau; Baxter: Research Funding, Speakers Bureau; Shire: Research Funding, Speakers Bureau.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Yue Wang ◽  
Ries J Langley ◽  
Kyle Tamshen ◽  
Heather D Maynard ◽  
Stephen M F Jamieson ◽  
...  

Abstract Growth hormone (GH) is a peptide hormone that mediates actions through binding to a cell surface GH receptor (GHR), activating key signalling pathways including the JAK/STAT pathway. Excess GH secretion leads to acromegaly and tumoral expression has been implicated in cancer progression, suggesting that GH is also a potential target for anticancer therapy. Pegvisomant is the only GHR antagonist approved for clinical use. This antagonist is a PEGylated form of a mutated GH (B2036) that binds and blocks the receptor. Conjugation to polyethylene glycol (PEG) at multiple amine residues reduces in vitro bioactivity but extends the serum half-life resulting in improved in vivo bioactivity. We investigated whether we could generate a long-acting PEGylated GHR antagonist through site-specific conjugation of PEG. A codon optimised GHR antagonist, with an introduced free cysteine residue at amino acid site 144 (S144C), was generated by gene synthesis and recombinantly engineered by gene fusion with thioredoxin. Recombinant protein was expressed in E. coli and purified using a series of chromatographic methods. Antagonists were PEGylated using cysteine-specific conjugation chemistry. In vitro activity was determined using a Ba/F3-GHR viability assay, and in vivo pharmacokinetic and bioactivity was determined in mice. Fusion to thioredoxin was found to improve soluble protein expression at 30℃, resulting in dramatically increased yield. After a series of purification steps, including Ni-NTA, 3C protease cleavage and ion-exchange chromatography, a single band with a molecular mass of 22 kDa was observed by SDS-PAGE analysis. The recombinant antagonist was conjugated to 20 kDa or 30 kDa-PEG at amino acid site S144C. After purification, a single band with an effective molecular size of approximately 60 kDa (PEG-20kDa conjugate) or 70 kDa (PEG-30kDa conjugate) was observed by SDS-PAGE analysis. The unconjugated antagonist inhibited the proliferation of Ba/F3-GHR cells in a dose-dependent manner with a half maximal inhibitory concentration (IC50) of 10.1 ± 2.5 nM. Following PEGylation and purification, the PEG-20kDa and PEG-30kDa conjugates retained high in vitro bioactivity with an IC50 of 66.2 ± 3.8 nM and 106.1 ± 7.1 nM, respectively. Pharmacokinetic analysis demonstrated that PEGylation increased the serum half-life to approximately 15 hours in mice. Subcutaneous administration of the PEG-30kDa conjugate (10 mg/kg/day) reduced serum IGF-I levels in mice. In conclusion, we have generated a novel long-acting human GHR antagonist conjugate by introducing a free cysteine at a non-essential site of the antagonist and targeted attachment of PEG.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36423 ◽  
Author(s):  
Zhifeng Huang ◽  
Guanghui Zhu ◽  
Chuanchuan Sun ◽  
Jingui Zhang ◽  
Yi Zhang ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 993
Author(s):  
Mie Kristensen ◽  
Ragna Guldsmed Diedrichsen ◽  
Valeria Vetri ◽  
Vito Foderà ◽  
Hanne Mørck Nielsen

Oral delivery of therapeutic peptides is hampered by their large molecular size and labile nature, thus limiting their permeation across the intestinal epithelium. Promising approaches to overcome the latter include co-administration with carrier peptides. In this study, the cell-penetrating peptide penetratin was employed to investigate effects of co-administration with insulin and the pharmacologically active part of parathyroid hormone (PTH(1-34)) at pH 5, 6.5, and 7.4 with respect to complexation, enzymatic stability, and transepithelial permeation of the therapeutic peptide in vitro and in vivo. Complex formation between insulin or PTH(1-34) and penetratin was pH-dependent. Micron-sized complexes dominated in the samples prepared at pH-values at which penetratin interacts electrostatically with the therapeutic peptide. The association efficiency was more pronounced between insulin and penetratin than between PTH(1-34) and penetratin. Despite the high degree of complexation, penetratin retained its membrane activity when applied to liposomal structures. The enzymatic stability of penetratin during incubation on polarized Caco-2 cell monolayers was pH-dependent with a prolonged half-live determined at pH 5 when compared to pH 6.5 and 7.4. Also, the penetratin-mediated transepithelial permeation of insulin and PTH(1-34) was increased in vitro and in vivo upon lowering the sample pH from 7.4 or 6.5 to 5. Thus, the formation of penetratin-cargo complexes with several molecular entities is not prerequisite for penetratin-mediated transepithelial permeation a therapeutic peptide. Rather, a sample pH, which improves the penetratin stability, appears to optimize the penetratin-mediated transepithelial permeation of insulin and PTH(1-34).


1971 ◽  
Vol 49 (1) ◽  
pp. 151-165 ◽  
Author(s):  
W. H. SAWYER ◽  
M. MANNING

SUMMARY The 4-threonine analogues of oxytocin and of mesotocin and isotocin were prepared by solid-phase synthesis. [4-Threonine]-oxytocin is about twice as active as oxytocin in rat uterus assays in vitro and in vivo and about three times as active in fowl vasodepressor assays. It is slightly more active than oxytocin in rat or rabbit milk-ejection assays. When infused intravenously into water-loaded rats it causes much less depression of diuresis than does an equal dose of oxytocin. [4-Threonine]-oxytocin has much less vasopressor activity than oxytocin. [4-Threonine]-mesotocin also shows enhanced oxytocin-like properties. Its oxytocic activity is equal to or greater than that of oxytocin and its fowl vasodepressor potency is about the same as that of [4-threonine]-oxytocin, 1500 u./mg. It also has less antidiuretic and vasopressor activities than mesotocin. Thus 4-threonine analogues, containing nothing but common l-amino acids, appear to have more of the specific oxytocin-like properties and less of the vasopressin-like properties than do oxytocin or mesotocin. Thus they may be considered improvements on the natural hormones. In this respect they are unique among the reported synthetic analogues of natural peptide hormones. Substitution of 4-threonine in the weakly-active analogue [3-leucine]-oxytocin also increases its oxytocic and fowl vasodepressor activities. Thus a threonine in the 4-position appears to endow oxytocin-like peptides with greater specific activities than do the amino acids that occur naturally in this position, glutamine and serine. These observations may be of interest when considered (a) from an evolutionary viewpoint, (b) in attempting to interpret relations between molecular structures and biological activities, and (c) as describing peptides with more of the desired properties of oxytocin and less of the undesired properties which might have therapeutic advantages over the natural hormone.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1505
Author(s):  
Felicity Y. Han ◽  
Weizhi Xu ◽  
Vinod Kumar ◽  
Cedric S. Cui ◽  
Xaria Li ◽  
...  

Peptides hold promise as therapeutics, as they have high bioactivity and specificity, good aqueous solubility, and low toxicity. However, they typically suffer from short circulation half-lives in the body. To address this issue, here, we have developed a method for encapsulation of an innate-immune targeted hexapeptide into nanoparticles using safe non-toxic FDA-approved materials. Peptide-loaded nanoparticles were formulated using a two-stage microfluidic chip. Microfluidic-related factors (i.e., flow rate, organic solvent, theoretical drug loading, PLGA type, and concentration) that may potentially influence the nanoparticle properties were systematically investigated using dynamic light scattering and transmission electron microscopy. The pharmacokinetic (PK) profile and biodistribution of the optimised nanoparticles were assessed in mice. Peptide-loaded lipid shell-PLGA core nanoparticles with designated size (~400 nm) and a sustained in vitro release profile were further characterized in vivo. In the form of nanoparticles, the elimination half-life of the encapsulated peptide was extended significantly compared with the peptide alone and resulted in a much higher distribution into the lung. These novel nanoparticles with lipid shells have considerable potential for increasing the circulation half-life and improving the biodistribution of therapeutic peptides to improve their clinical utility, including peptides aimed at treating lung-related diseases.


Author(s):  
Dayane Ribeiro ◽  
Helena Russo ◽  
Karina Fraige ◽  
Maria Zeraik ◽  
Cláudio Nogueira ◽  
...  

Platonia insignis fruit, popularly known as bacuri, is traditionally used in folk medicine for its anti-inflammatory and antioxidant properties. Therefore, this study determined the chemical composition and biological activities of the bacuri’s shell and seeds extracts, considered residues from its consumption and industrial uses. Four biflavonoids (GB-2a, GB-1a, morelloflavone, and volkensiflavone) were identified in the extracts by high-performance liquid chromatography-diode array detection (HPLC-DAD), liquid chromatography tandem mass spectrometry (LC-MS/MS), and liquid chromatography-solid phase extraction-nuclear magnetic resonance (LC-SPE-NMR) techniques. Morelloflavone was identified as the main compound in the shell ethyl acetate extract, being responsible for the high in vitro antioxidant (50% effective concentration (EC50) ranging from 8.0-10.5 µg mL−1 in different protocols), anti-glycant (80%), and moderate inhibition of nitric oxide (1.56 µg mL−1 for > 90% cell viability) activities. This extract showed promising in vivo anti-inflammatory activity evaluated through the paw edema protocol after its incorporation into a liquid-crystalline drug carrier system, reducing the edema by up to 31%. The results demonstrated the potential of the fruit for the development of drugs of natural origin and corroborated to add economic value to these discarded residues.


1970 ◽  
Vol 64 (4) ◽  
pp. 656-669 ◽  
Author(s):  
J. van der Vies

ABSTRACT Since the biological activities of long-acting hormonal preparations, containing steroids or esters of steroids dissolved in arachis oil, depend very much on the rate of absorption from the intramuscular depot, an in vitro model for the latter has been developed. In this model the solution of the drug in oil is applied to a strip of filter paper and the spot eluted with a stream of hog plasma. Using this model, results were obtained which correlated with the observed rates of resorption in vivo. This demonstrates that the physical process underlying parenteral resorption depends on the distribution of the steroid between oil and plasma. As far as these esters of steroids are concerned, the steroid moiety of which is the ultimate active component, the hydrolysis of the ester by the esterase of the transporting plasma is another important factor. This has been studied in an in vitro system. The results obtained with both models proved valuable in understanding the pharmacological properties of a number of anabolic, androgenic and progestational steroids and steroid esters and also in explaining the differences in biological activity between closely related preparations.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1334
Author(s):  
Byungseop Yang ◽  
Inchan Kwon

3-arylpropiolonitriles (APN) are promising alternatives to maleimide for chemo-selective thiol conjugation, because the reaction product has a remarkably hydrolytic stability compared with that of thiol-maleimide reactions in vitro. However, whether cysteine modification with APN enhances stability in vivo compared to thiol-maleimide reactions remains unclear, probably due to the too short in vivo serum half-life of a protein to observe significant cleavage of thiol-maleimide/-APN reaction products. The conjugation of human serum albumin (HSA) to a therapeutic protein reportedly prolongs the in vivo serum half-life. To evaluate the in vivo stability of the thiol-APN reaction product, we prepared HSA-conjugated Arthrobacter globiformis urate oxidase (AgUox), a therapeutic protein for gout treatment. Site-specific HSA conjugation to AgUox was achieved by combining site-specific incorporation of tetrazine containing an amino acid (frTet) into AgUox and a crosslinker containing trans-cyclooctene and either thiol-maleimide (AgUox-MAL-HSA) or -APN chemistry (AgUox-APN-HSA). Substantial cleavage of the thioester of AgUox-MAL-HSA was observed in vitro, whereas no cleavage of the thiol-APN product of AgUox-APN-HSA was observed. Furthermore, the in vivo serum half-life of AgUox-APN-HSA in the late phase was significantly longer than that of AgUox-MAL-HSA. Overall, these results demonstrate that the thiol-APN chemistry enhanced the in vivo stability of the HSA-conjugated therapeutic protein.


1985 ◽  
Vol 50 (2) ◽  
pp. 418-427 ◽  
Author(s):  
Michal Lebl ◽  
Victor J. Hruby ◽  
Jiřina Slaninová ◽  
Tomislav Barth

Solis phase methodology was developed for the synthesis of carba-analogues of oxytocin. Two known compounds (deamino-1-carba-oxytocin (I) and deamino-6-carba-oxytocin (II)) and two new analogues ([4-threonine]deamino-1-carba-oxytocin (III) and [4-threonine]deamino-6-carba-oxytocin (IV)) were synthesized using different approaches. The latter two compounds were found to possess high biological activity in the rat uterotonic (in vitro and in vivo) and galactogogic (in vivo) assays.


Sign in / Sign up

Export Citation Format

Share Document