equal dose
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 67 (No. 4) ◽  
pp. 199-207
Author(s):  
Václav Novák ◽  
Petr Šařec ◽  
Kateřina Křížová

To investigate the effects of organic matter activators combined with a pig slurry on a soil’s physical properties, a field experiment was carried out in a monoculture of corn (2015–2017). Three pig slurry application variants complemented with the activators in question, i.e. with PRP SOL spread directly on the soil surface (SOL), with Z’fix added to the slurry during the pig housing (ZF) and with a combination of both PRP SOL and Z’fix (ZF_SOL), were compared with just the pig slurry (C) under an equal dose of nitrogen and a uniform growing technology. According to the results, a positive effect of the penetration resistance with the pig slurry and the activators of organic matter (Z’fix and PRP SOL) was not proven. The saturated hydraulic conductivity was demonstrably better achieved with the Z’fix activator, but PRP SOL activator also provided a certain improvement. The largest change in the unit draught was observed in the ZF_SOL application (20% increase). The results seem ambiguous; however, they give a good indication of the activators’ effect in practice. Nevertheless, the findings would certainly benefit from further verification.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu-Jie Wang ◽  
Pei Tao ◽  
Yan Wang

The transformation pathways of diterpenoid alkaloids have been clarified in the boiling and steaming process. Aconitine, a famous diterpenoid alkaloid, is successively transformed into benzoylaconine and aconine during the processes of boiling and steaming, but the transformation pathway remains to be determined in the sand frying process. The present study aims at investigating the transformation pathways of aconitine in the process of sand frying, as well as assessing the cardiotoxicity and antiarrhythmic activity of aconitine and its converted products. The parameters of temperature and time for the structural transformation of aconitine were confirmed by HPLC. The converted products were further separated and identified by column chromatography, NMR, and HR-ESI-MS. Furthermore, by observing the lead II electrocardiogram (ECG) changes in rats under an equivalent dose, the cardiotoxicity of aconitine and its converted products were compared. Ultimately, the antiarrhythmic effect of the converted products was investigated by employing the model of aconitine-induced arrhythmia. Consequently, the structure of aconitine was converted when processed at 120°C–200°C for 1–40 min. Two diterpenoid alkaloids, a pair of epimers, namely, pyroaconitine and 16-epi-pyroaconitine, were further isolated from processed aconitine. 0.03 mg/kg aconitine induced arrhythmias in normal rats, while the converted products did not exhibit arrhythmias under an equal dose. In the antiarrhythmic assay, 16-epi-pyroaconitine could dose-dependently delay the onset time of VPB, reduce the incidence of VT, and increase the arrhythmia inhibition rate, demonstrating comparatively strong antiarrhythmic activity. Conclusively, compared with the prototype compound aconitine, the converted products exhibited lower cardiotoxicity. Further investigations on the cardiotoxicity indicated that pyroaconitine with β configuration had a stronger cardiotoxicity than 16-epi-pyroaconitine with α configuration. Furthermore, 16-epi-pyroaconitine could antagonize the arrhythmogenic effect caused by the prototype compound aconitine; the antiarrhythmic effect of 16-epi-pyroaconitine was stronger than lidocaine and propafenone, which had the potential to be developed as antiarrhythmic drugs.


2021 ◽  
Vol 34 (2) ◽  
pp. 91-97
Author(s):  
Luciana Sánchez ◽  
Ángela Ubios

Although it has been demonstrated that exposure of lactating rats to CrVI delays tooth eruption, the effects of CrVI exposure on bone remodeling in the developing alveolus during tooth eruption remain unknown. Our purpose was to analyze the effect of CrVI in the alveolus of the first lower molar of rats. Thirty-two suckling Wistar rats were divided into two groups. The experimental group received 12.5 mg/kg body weight/day of potassium dichromate dissolved in saline solution by oral gavage as of day 4 of the experiment; the control group received an equal dose of saline solution. Each group was divided into two sub-sets and euthanized at the ages of 9 and 15 days, respectively. Histochemical and histomorphometric studies of the bone surfaces of the developing tooth alveolus were performed. The percentage of bone formation surfaces was lower in experimental animals than in age-matched controls. The percentage of bone resorption surfaces was significantly lower in 9-day-old experimental rats than in controls and significantly higher in 15-day-old experimental rats than in controls. Exposure to CrVI during lactation alters the sequence of bone resorption and formation in the walls of the developing alveolus, both of which are necessary for tooth eruption, thus causing a delay.


Drug Research ◽  
2021 ◽  
Author(s):  
Budi Prasaja ◽  
Yahdiana Harahap ◽  
Monika Sandra ◽  
Irene Iskandar ◽  
Windy Lusthom ◽  
...  

AbstractIbuprofen is a widely used and well-tolerated analgesic and antipyretic. It is desirable to have a formulation with a rapid rate of absorption because it is required for rapid pain relief and temperature reduction. Previous studies have described the pharmacokinetic profiles of ibuprofen suppository and the mean peak times of ibuprofen suppository were around 1.8 hours, indicating a slower rate of absorption. The aim of this study is to compare the pharmacokinetic parameters of rectal administration of ibuprofen between enema and suppository form in order to provide evidence for the faster absorption rates of ibuprofen enema. This study was a phase-1 clinical study, open-label, randomized and two-way crossover with one-week washout period comparing the absorption profile of equal dose of ibuprofen administered rectally in two treatment phases: ibuprofen suppository and enema. Blood samples were collected post dose for pharmacokinetic analyses. Tmax was analyzed using a Wilcoxon matched paired test. A standard ANOVA model, appropriate for bioequivalence studies was used and ratios of 90% confidence intervals were calculated. This study showed that Tmax for ibuprofen enema was less than half that of ibuprofen suppository (median 40 min vs. 90 min, respectively; p-value=0.0003). Cmax and AUC0–12 for ibuprofen enema were bioequivalent to ibuprofen suppository, as the ratio of test/reference=104.52%, 90% CI 93.41–116.95% and the ratio of test/reference=98.12%, 90%CI 93.34–103.16%, respectively, which fell within 80–125% bioequivalence limit. The overall extent of absorption was similar to the both, which were all well tolerated. In terms of Tmax, Ibuprofen enema was absorbed twice as quickly as from ibuprofen suppository. Therefore it is expected that an ibuprofen enema may provide faster onset of analgesic and antipyretic benefit.


2021 ◽  
Author(s):  
Fernando F Anhe ◽  
Nicole G Barra ◽  
Joseph F Cavallari ◽  
Brandyn D Henriksbo ◽  
Jonathan Schertzer

Lipopolysaccharides (LPS) can promote metabolic endotoxemia, which is considered inflammatory and metabolically detrimental based on Toll-like receptor (TLR)4 agonists such as Escherichia coli-derived LPS. LPS from certain bacteria antagonize TLR4 yet contribute to endotoxemia measured by Endotoxin Units (EU). We found that E. coli LPS impaired gut barrier function and worsened glycemic control in mice, but equal doses of LPS from other bacteria did not. Matching the LPS dose from R. sphaeroides and E. coli by EU revealed that only E. coli LPS promoted dysglycemia, adipose inflammation, delayed intestinal glucose absorption, and augmented insulin and GLP-1 secretion. Metabolically beneficial endotoxemia promoted by R. sphaeroides LPS counteracted dysglycemia caused by an equal dose of E. coli LPS and promoted insulin sensitivity in obese mice. The concept of metabolic endotoxemia should be expanded beyond LPS load (EU) to include LPS characteristics, where the balance of deleterious and beneficial endotoxemia regulates host metabolism.


2021 ◽  
Vol 232 (7) ◽  
Author(s):  
V. A. Terekhova ◽  
E. V. Fedoseeva ◽  
A. P. Kiryushina ◽  
A. Barra Caracciolo ◽  
N. V. Verkhovtseva

2021 ◽  
Vol 8 (6) ◽  
pp. 77
Author(s):  
Oihane Mitxelena-Iribarren ◽  
Sara Lizarbe-Sancha ◽  
Jay Campisi ◽  
Sergio Arana ◽  
Maite Mujika

The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment than traditional treatment methods. Although the combination of target therapy with nanotechnology created new hope for cancer treatment, methodological issues during in vitro validation of nanovehicles slowed their application. In the current work, the effect of methotrexate (MTX) encapsulated in different matrices was evaluated in a dynamic microfluidic platform. Effects on the viability of osteosarcoma cells in the presence of recirculation of cell media, free MTX and two types of blank and drug-containing nanoparticles were successfully assessed in different tumor-mimicking microenvironments. Encapsulated MTX was more effective than the equal dose free drug treatment, as cell death significantly increased under the recirculation of both types of drug-loaded nanoparticles in all concentrations. In fact, MTX-nanoparticles reduced cell population 50 times more than the free drug when 150-µM drug dose was recirculated. Moreover, when compared to the equivalent free drug dose recirculation, cell number was reduced 60 and 100 points more under recirculation of each nanoparticle with a 15-µM drug concentration. Thus, the results obtained with the microfluidic model present MTX-lipid nanoparticles as a promising and more effective therapy for pediatric osteosarcoma treatment than current treatment options.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shalini Sharma ◽  
Vatika Bhardwaj ◽  
Shailja Sharma ◽  
Shelly Rana

Abstract Background and Aims Postoperative sore throat (POST) is common after endotracheal intubation making patients uncomfortable and anxious in postoperative period. The present study was undertaken to compare efficacy of equal dose of dexamethasone in preventing POST via three different routes, i.e., intravenous, topical, and nebulization before surgery. Methods and Results The present prospective double-blind randomized parallel group trial included 190 patients of either sex above 18 years, American Society of Anesthesiologists (ASA) physical status I–II posted for laparoscopic cholecystectomy. The patients were divided into three groups. Patients in group N were nebulized with 8 mg dexamethasone prior to surgery, patients in group I received intravenous dexamethasone (8 mg) before induction of anesthesia, while patients in group C were intubated with endotracheal tube which was pretreated (cuff soaked in dexamethasone 8 mg). The severity of POST and hoarseness of voice was determined by interviewing patients after 24-h of completion of surgery. Incidence of POST decreased in all patients with maximum decrease in group N (18%), while 30.8% in group I and 30.4% in group C. This decrease was not statistically significant when compared to group I (p 0.14) as well as group C (p 0.15). Incidence of hoarseness significantly decreased in group N (15.6%) as compared to group I (40.3%) as well as group C (39.1%). This decrease was statistically significant when compared to group I (p 0.005) as well as group C (p 0.009). Conclusions Topical dexamethasone (group C) is as effective as intravenous dexamethasone in decreasing incidence of POST, while both the techniques are not effective in decreasing hoarseness of voice. Nebulization is most effective method in decreasing POST as well as hoarseness. Trial Registration CTRI/2017/08/009524 dated 29 August 2017 prospectively.


2021 ◽  
Vol 49 (4) ◽  
pp. 714-719
Author(s):  
Oliver C. Turner ◽  
Brian Knight ◽  
Aleksandra Zuraw ◽  
Geert Litjens ◽  
Daniel G. Rudmann

The 2019 manuscript by the Special Interest Group on Digital Pathology and Image Analysis of the Society of Toxicologic pathology suggested that a synergism between artificial intelligence (AI) and machine learning (ML) technologies and digital toxicologic pathology would improve the daily workflow and future impact of toxicologic pathologists globally. Now 2 years later, the authors of this review consider whether, in their opinion, there is any evidence that supports that thesis. Specifically, we consider the opportunities and challenges for applying ML (the study of computer algorithms that are able to learn from example data and extrapolate the learned information to unseen data) algorithms in toxicologic pathology and how regulatory bodies are navigating this rapidly evolving field. Although we see similarities with the “Last Mile” metaphor, the weight of evidence suggests that toxicologic pathologists should approach ML with an equal dose of skepticism and enthusiasm. There are increasing opportunities for impact in our field that leave the authors cautiously excited and optimistic. Toxicologic pathologists have the opportunity to critically evaluate ML applications with a “call-to-arms” mentality. Why should we be late adopters? There is ample evidence to encourage engagement, growth, and leadership in this field.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Dehua Luo ◽  
Li Huang ◽  
Vijay Singh Gondil ◽  
Wanli Zhou ◽  
Wan Yang ◽  
...  

ABSTRACT Streptococcus pneumoniae is a leading pathogen for bacterial pneumonia, which can be treated with bacteriophage lysins harboring a conserved choline binding module (CBM). Such lysins regularly function as choline-recognizing dimers. Previously, we reported a pneumococcus-specific lysin ClyJ comprising the binding domain from the putative endolysin gp20 from the Streptococcus phage SPSL1 and the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain from the PlyC lysin. A variant of ClyJ with a shortened linker, i.e., ClyJ-3, shows improved activity and reduced cytotoxicity. Resembling typical CBM-containing lysins, ClyJ-3 dimerized upon binding with choline. Herein, we further report a choline-recognizing variant of ClyJ-3, i.e., ClyJ-3m, constructed by deleting its C-terminal tail. Biochemical characterization showed that ClyJ-3m remains a monomer after it binds to choline yet exhibits improved bactericidal activity against multiple pneumococcal strains with different serotypes. In an S. pneumoniae-infected bacteremia model, a single intraperitoneal administration of 2.32 μg/mouse of ClyJ-3m showed 70% protection, while only 20% of mice survived in the group receiving an equal dose of ClyJ-3 (P < 0.05). A pharmacokinetic analysis following single intravenously doses of 0.29 and 1.16 mg/kg of ClyJ-3 or ClyJ-3m in BALB/c mice revealed that ClyJ-3m shows a similar half-life but less clearance and a greater area under curve than ClyJ-3. Taken together, the choline-recognizing monomer ClyJ-3m exhibited enhanced bactericidal activity and improved pharmacokinetic proprieties compared to those of its parental ClyJ-3 lysin. Our study also provides a new way for rational design and programmed engineering of lysins targeting S. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document