scholarly journals Effect of Rumex Acetosa Extract, a Herbal Drug, on the Absorption of Fexofenadine

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 547
Author(s):  
Jung Hwan Ahn ◽  
Junhyeong Kim ◽  
Naveed Ur Rehman ◽  
Hye-Jin Kim ◽  
Mi-Jeong Ahn ◽  
...  

Herbal drugs are widely used for the auxiliary treatment of diseases. The pharmacokinetics of a drug may be altered when it is coadministered with herbal drugs that can affect drug absorption. The effects of herbal drugs on absorption must be evaluated. In this study, we investigated the effects of Rumex acetosa (R. acetosa) extract on fexofenadine absorption. Fexofenadine was selected as a model drug that is a substrate of P-glycoprotein (P-gp) and organic anion transporting polypeptide 1A2 (OATP1A2). Emodine—the major component of R. acetosa extract—showed P-gp inhibition in vitro and in vivo. Uptake of fexofenadine via OATP1A2 was inhibited by R. acetosa extract in OATP1A2 transfected cells. A pharmacokinetic study showed that the area under the plasma concentration–time curve (AUC) of fexofenadine was smaller in the R. acetosa extract coadministered group than in the control group. R. acetosa extract also decreased aqueous solubility of fexofenadine HCl. The results of this study suggest that R. acetosa extract could inhibit the absorption of certain drugs via intervention in the aqueous solubility and the drug transporters. Therefore, R. acetosa extract may cause drug interactions when coadministered with substrates of drug transporters and poorly water-soluble drugs, although further clinical studies are needed.

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


RSC Advances ◽  
2015 ◽  
Vol 5 (99) ◽  
pp. 81728-81738 ◽  
Author(s):  
Rohan D. Deshpande ◽  
Gowda D. V. ◽  
Naga Sravan Kumar Varma Vegesna ◽  
Rudra Vaghela ◽  
Kulkarni P. K.

In the present study, efforts were made to optimize the process parameters of LAS technique for developing GLB NPs, in order to enhance the aqueous solubility as well as oral bioavailability.


1992 ◽  
Vol 284 (1) ◽  
pp. 259-265 ◽  
Author(s):  
H J Verkade ◽  
K J M Zaal ◽  
J T P Derksen ◽  
R J Vonk ◽  
D Hoekstra ◽  
...  

We have investigated the processing of the non-exchangeable fluorescent phospholipid analogue phosphatidyl(N-sulphorhodamine B sulphonyl)ethanolamine (N-Rh-PE) by rat liver cells. In the hepatocyte couplet system, N-Rh-PE was incorporated into the plasma membrane at 2 degrees C and readily internalized upon warming to 37 degrees C. Fluorescence was initially found to be concentrated in vesicles clustered throughout the cell, but subsequently it started to accumulate in pericanalicular vesicles, tentatively identified as lysosomes, and in the bile canalicular lumen. Analysis of cells and media by t.l.c. revealed the slow formation of at least two metabolites. After intravenous injection into bile-fistula rats of [9,10-3H-oleoyl]N-Rh-PE incorporated in small unilamellar liposomes, the initial rates of elimination from plasma of 3H and rhodamine label were virtually identical. However, biliary secretion of the 3H label (5.5% of dose at 2 h) was much slower than that of the rhodamine label (49.3% at 2 h). The rhodamine label in bile was chloroform-soluble, but not identical to the native molecule, and was resistant to phospholipase A2 and alkaline hydrolysis. To gain insight in the mechanism of the rapid bile secretion of this metabolite, we compared the processing of N-Rh-PE, its deacylated form [glycerophospho(N-sulphorhodamine B sulphonyl)ethanolamine; Gly-N-Rh] and the rhodamine label itself (sulphorhodamine B sulphonyl chloride; SRho). Intravenous injection of chloroform-soluble N-Rh-PE and of methanol/water-soluble Gly-N-Rh complexed with albumin both resulted in rapid bile secretion of chloroform-soluble fluorescent compounds (60.2% and 86.3% respectively at 2 h), which showed behaviour identical to that of the metabolite of liposomal N-Rh-PE on t.l.c. Methanol/water-soluble SRho was also rapidly secreted into bile (89.5% at 2 h) without being metabolized. Bile secretion of the chloroform-soluble metabolite of N-Rh-PE and of SRho was markedly impaired (-31% and -52% respectively) in GY Wistar rats, which express a genetic defect in the hepatobiliary transport of organic anions. Our data show that the rat hepatocyte is capable of modifying the structure of N-Rh-PE, a process which proceeds considerably faster in vivo than in vitro. The chloroform-soluble metabolite is subsequently rapidly removed via the bile. The canalicular organic anion transporting system, which is deficient in GY rats, appears to be involved in the excretion of this apolar product of hepatic metabolism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hana Bavlovič Piskáčková ◽  
Hana Jansová ◽  
Jan Kubeš ◽  
Galina Karabanovich ◽  
Nela Váňová ◽  
...  

AbstractThe bisdioxopiperazine topoisomerase IIβ inhibitor ICRF-193 has been previously identified as a more potent analog of dexrazoxane (ICRF-187), a drug used in clinical practice against anthracycline cardiotoxicity. However, the poor aqueous solubility of ICRF-193 has precluded its further in vivo development as a cardioprotective agent. To overcome this issue, water-soluble prodrugs of ICRF-193 were prepared, their abilities to release ICRF-193 were investigated using a novel UHPLC-MS/MS assay, and their cytoprotective effects against anthracycline cardiotoxicity were tested in vitro in neonatal ventricular cardiomyocytes (NVCMs). Based on the obtained results, the bis(2-aminoacetoxymethyl)-type prodrug GK-667 was selected for advanced investigations due to its straightforward synthesis, sufficient solubility, low cytotoxicity and favorable ICRF-193 release. Upon administration of GK-667 to NVCMs, the released ICRF-193 penetrated well into the cells, reached sufficient intracellular concentrations and provided effective cytoprotection against anthracycline toxicity. The pharmacokinetics of the prodrug, ICRF-193 and its rings-opened metabolite was estimated in vivo after administration of GK-667 to rabbits. The plasma concentrations of ICRF-193 reached were found to be adequate to achieve cardioprotective effects in vivo. Hence, GK-667 was demonstrated to be a pharmaceutically acceptable prodrug of ICRF-193 and a promising drug candidate for further evaluation as a potential cardioprotectant against chronic anthracycline toxicity.


2018 ◽  
Vol 8 (4) ◽  
pp. 643-655 ◽  
Author(s):  
Babak Roshangar Zineh ◽  
Mohammad Reza Shabgard ◽  
Leila Roshangar

Purpose: Cartilage shows neither repairs nor regenerative properties after trauma or gradual wear and causes severe pain due to bones rubbing. Bioprinting of tissue-engineered artificial cartilage is one of the most fast-growing sciences in this area that can help millions of people against this disease. Methods: Bioprinting of proper bioscaffolds for cartilage repair was the main goal of this study. The bioprinting process was achieved by a novel composition consisting of alginate (AL), Halloysite nanotube (HNT), and methylcellulose (MC) prepared in bio-ink. Also, the effect of Russian olive (RO) in chondrocytes growth on bioscaffolds was also investigated in this work. Compressive, hardness and viscosity tests, Energy-Dispersive X-Ray Spectroscopy (EDX), Fourier-Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), water-soluble Tetrazolium (WST) assay, and also transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were carried out. Results: The results show that in constant concentrations of AL, MC, and RO (20 mg/ml AL, 20 mg/ml MC, and 10 mg/ml RO) when concentration of HNT increased from 10 mg/ml (T-7) to 20 mg/ml (T-8) compressive stiffness increased from 241±45 kPa to 500.66±19.50 kPa. Also, 20 mg/ml of AL in composition saved proper water content for chondrocyte growth and produced good viscosity properties for a higher printing resolution. Conclusion: RO increased chondrocytes living cell efficiency by 11% on bioprinted scaffolds in comparison with the control group without RO. Results obtained through in-vivo studies were similar to those of in-vitro studies. According to the results, T-7 bio-ink has good potential in bioprinting of scaffolds in cartilage repairs.


2012 ◽  
Vol 48 (4) ◽  
pp. 759-772 ◽  
Author(s):  
Mohammad Aamir Mirza ◽  
Mohammad Akhlaquer Rahman ◽  
Sushama Talegaonkar ◽  
Zeenat Iqbal

A large majority of new chemical entities and many existing drug molecules exhibit poor aqueous solubility, which may limit their potential use in developing drug formulations, with optimum bioavailability. One of the approaches to improve the solubility of a poorly water soluble drug and eventually its bioavailability is complexation with agents like humic acid (HA), fulvic acid (FA), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and caffeine (Caff). The current work emphasized at employing these agents to prepare different complexes and their in vitro/in vivo assessment. All the complexes evaluated for their complexation efficiency and authenticated by molecular modeling; conformational analysis, differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and mass spectroscopy. Furthermore, the complexes were assessed in an in vivo, rat vaginal model for their efficacy in treatment of vaginal candidiasis. Amongst the five tested complexes, fulvic acid-itraconazole complex yielded better solubility as well as in vivo efficacy and therefore may further be explored for developing a commercial formulation for treating vaginal candidiasis.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Sign in / Sign up

Export Citation Format

Share Document