scholarly journals Enhanced Antisense Oligonucleotide Delivery Using Cationic Liposomes Grafted with Trastuzumab: A Proof-of-Concept Study in Prostate Cancer

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1166
Author(s):  
Guillaume Sicard ◽  
Clément Paris ◽  
Sarah Giacometti ◽  
Anne Rodallec ◽  
Joseph Ciccolini ◽  
...  

Prostate cancer (PCa) is the second most common cancer in men worldwide and the fifth leading cause of death by cancer. The overexpression of TCTP protein plays an important role in castration resistance. Over the last decade, antisense technology has emerged as a rising strategy in oncology. Using antisense oligonucleotide (ASO) to silence TCTP protein is a promising therapeutic option—however, the pharmacokinetics of ASO does not always meet the requirements of proper delivery to the tumor site. In this context, developing drug delivery systems is an attractive strategy for improving the efficacy of ASO directed against TCTP. The liposome should protect and deliver ASO at the intracellular level in order to be effective. In addition, because prostate cancer cells express Her2, using an anti-Her2 targeting antibody will increase the affinity of the liposome for the cell and optimize the intratumoral penetration of the ASO, thus improving efficacy. Here, we have designed and developed pegylated liposomes and Her2-targeting immunoliposomes. Mean diameter was below 200 nm, thus ensuring proper enhanced permeation and retention (EPR) effect. Encapsulation rate for ASO was about 40%. Using human PC-3 prostate cancer cells as a canonical model, free ASO and ASO encapsulated into either liposomes or anti-Her2 immunoliposomes were tested for efficacy in vitro using 2D and 3D spheroid models. While the encapsulated forms of ASO were always more effective than free ASO, we observed differences in efficacy of encapsulated ASO. For short exposure times (i.e., 4 h) ASO liposomes (ASO-Li) were more effective than ASO-immunoliposomes (ASO-iLi). Conversely, for longer exposure times, ASO-iLi performed better than ASO-Li. This pilot study demonstrates that it is possible to encapsulate ASO into liposomes and to yield antiproliferative efficacy against PCa. Importantly, despite mild Her2 expression in this PC-3 model, using a surface mAb as targeting agent provides further efficacy, especially when exposure is longer. Overall, the development of third-generation ASO-iLi should help to take advantage of the expression of Her2 by prostate cancer cells in order to allow greater specificity of action in vivo and thus a gain in efficacy.

Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


2013 ◽  
Vol 189 (4S) ◽  
Author(s):  
Kristian Novakovic ◽  
Margo Quinn ◽  
Philip Fitchev ◽  
Mona Cornwell ◽  
Charles Brendler ◽  
...  

2009 ◽  
Vol 8 (4) ◽  
pp. 802-808 ◽  
Author(s):  
Madeleine S.Q. Kortenhorst ◽  
Sumit Isharwal ◽  
Paul J. van Diest ◽  
Wasim H. Chowdhury ◽  
Cameron Marlow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document