scholarly journals Enhanced Dissolution of Naproxen by Combining Cocrystallization and Eutectic Formation

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 618
Author(s):  
Hakyeong Kim ◽  
Soeun Jang ◽  
Il Won Kim

Improving dissolution properties of active pharmaceutical ingredients (APIs) is a critical step in drug development with the increasing occurrence of sparingly soluble APIs. Cocrystal formation is one of the methods to alter the physicochemical properties of APIs, but its dissolution behavior in biorelevant media has been scrutinized only in recent years. We investigated the combined strategy of cocrystallization and eutectic formation in this regard and utilized the cocrystal model system of naproxen and three pyridinecarboxamide isomers. Binary melting diagrams were constructed to discover the eutectic compositions of the three cocrystals with excess amounts of pyridinecarboxamides. The melt–crystallized eutectics and cocrystals were compared in their dissolution behaviors with respect to neat naproxen. The eutectics enhanced the early dissolution rates of the cocrystals in both the absence and presence of biologically relevant bile salt and phospholipid components, whereas the cocrystal dissolution was expedited and delayed, respectively. The combined strategy in the present study will be advantageous in maximizing the utility of the pharmaceutical cocrystals.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1098
Author(s):  
Songhee Jin ◽  
Jisun Jang ◽  
Soyeon Lee ◽  
Il Won Kim

Pharmaceutical eutectics are solid mixtures, where the crystals of active pharmaceutical ingredients (APIs) are finely divided in the phase-separated microstructures. The size reduction makes the eutectic formation a viable option to improve the dissolution rate of the poorly soluble APIs. In the present study, ibuprofen, naproxen, and sorafenib were investigated in terms of their phase behaviors with fatty alcohols, such as tetradecanol, octadecanol, and docosanol. Among the studied APIs, only ibuprofen was able to form eutectics with the fatty alcohols, and this was in agreement with the feasibility prediction based on the van ’t Hoff equation and solubility parameters. In vitro release behavior was significantly improved for the ibuprofen/octadecanol eutectic mixture, although the practical insolubility of octadecanol in water was the opposite of the outstanding hydrophilicity of usual eutectic formers. The feasibility prediction and the choice of eutectic formers in the present study will be useful in advancing the utility of the pharmaceutical eutectics.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 959 ◽  
Author(s):  
Joseph Bennett ◽  
Michaella Raglione ◽  
Shalisa Oburn ◽  
Leonard MacGillivray ◽  
Mark Arnold ◽  
...  

Terahertz (THz) spectroscopy has been put forth as a non-contact, analytical probe to characterize the intermolecular interactions of biologically active molecules, specifically as a way to understand, better develop, and use active pharmaceutical ingredients. An obstacle towards fully utilizing this technique as a probe is the need to couple features in the THz regions to specific vibrational modes and interactions. One solution is to use density functional theory (DFT) methods to assign specific vibrational modes to signals in the THz region, coupling atomistic insights to spectral features. Here, we use open source planewave DFT packages that employ ultrasoft pseudopotentials to assess the infrared (IR) response of organic compounds and complex co-crystal formulations in the solid state, with and without dispersion corrections. We compare our DFT computed lattice parameters and vibrational modes to experiment and comment on how to improve the agreement between theory and modeling to allow for THz spectroscopy to be used as an analytical probe in complex biologically relevant systems.


2019 ◽  
Vol 69 (12) ◽  
pp. 3590-3592
Author(s):  
Nela Bibire ◽  
Romeo Iulian Olariu ◽  
Luminita Agoroaei ◽  
Madalina Vieriu ◽  
Alina Diana Panainte ◽  
...  

Active pharmaceutical ingredients such as isoniazid, pyrazinamide and rifampicin are among the most important first-line anti-tuberculosis drugs. A simple, rapid and sensitive reversed phase-high performance liquid chromatographic assay method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin has been developed. Separation of the interest compounds was achieved in a 10 min chromatographic run in gradient elution mode on a Zorbax SB-C18 stainless steel column (150 � 4 mm, 5 mm) using a guard column containing the same stationary phase. The gradient elution was carried out with a mobile phase of 10% CH3CN aqueous solution for channel A and 50% CH3CN in pH = 6.8 phosphate buffer (20 mM), to which 1.5 mL triethylamine were added for channel B. Quantification of the analyzed substances was carried out spectrophotometrically at 269 nm. Detection limits of 0.48 mg/L for isoniazid, 0.52 mg/L for pyrazinamide and 0.48 mg/L for rifampicin were established for the developed assay method. The present work showed that the proposed analysis method was advantageous for simple and rapid analysis of the active pharmaceutical ingredients in pharmaceuticals and biological fluids.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bach-Ngan Nguyen ◽  
Florian Tieves ◽  
Thomas Rohr ◽  
Hilke Wobst ◽  
Felix S. Schöpf ◽  
...  

AbstractThe production of peptides as active pharmaceutical ingredients (APIs) by recombinant technologies is of emerging interest. A reliable production platform, however, is still missing due the inherent characteristics of peptides such as proteolytic sensitivity, aggregation and cytotoxicity. We have developed a new technology named Numaswitch solving present limitations. Numaswitch was successfully employed for the production of diverse peptides and small proteins varying in length, physicochemical and functional characteristics, including Teriparatide, Linaclotide, human β-amyloid and Serum amyloid A3. Additionally, the potential of Numaswitch for a cost-efficient commercial production is demonstrated yielding > 2 g Teriparatide per liter fermentation broth in a quality meeting API standard.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 610
Author(s):  
Mariann Inga Van Meter ◽  
Salah M. Khan ◽  
Brynne V. Taulbee-Cotton ◽  
Nathan H. Dimmitt ◽  
Nathan D. Hubbard ◽  
...  

Agglomeration of active pharmaceutical ingredients (API) in tablets can lead to decreased bioavailability in some enabling formulations. In a previous study, we determined that crystalline APIs can be detected as agglomeration in tablets formulated with amorphous acetaminophen tablets. Multiple method advancements are presented to better resolve agglomeration caused by crystallinity in standard tablets. In this study, we also evaluate three “budget” over-the-counter headache medications (subsequently labeled as brands A, B, and C) for agglomeration of the three APIs in the formulation: Acetaminophen, aspirin, and caffeine. Electrospray laser desorption ionization mass spectrometry imaging (ELDI-MSI) was used to diagnose agglomeration in the tablets by creating molecular images and observing the spatial distributions of the APIs. Brand A had virtually no agglomeration or clustering of the active ingredients. Brand B had extensive clustering of aspirin and caffeine, but acetaminophen was observed in near equal abundance across the tablet. Brand C also had extensive clustering of aspirin and caffeine, and minor clustering of acetaminophen. These results show that agglomeration with active ingredients in over-the-counter tablets can be simultaneously detected using ELDI-MS imaging.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2280
Author(s):  
Tomasz Koczorowski ◽  
Wojciech Szczolko ◽  
Anna Teubert ◽  
Tomasz Goslinski

The syntheses, spectral UV–Vis, NMR, and electrochemical as well as photocatalytic properties of novel magnesium(II) and zinc(II) symmetrical sulfanyl porphyrazines with 2-(morpholin-4-yl)ethylsulfanyl peripheral substituents are presented. Both porphyrazine derivatives were synthesized in cyclotetramerization reactions and subsequently embedded on the surface of commercially available P25 titanium(IV) oxide nanoparticles. The obtained macrocyclic compounds were broadly characterized by ESI MS spectrometry, 1D and 2D NMR techniques, UV–Vis spectroscopy, and subjected to electrochemical studies. Both hybrid materials, consisting of porphyrazine derivatives embedded on the titanium(IV) oxide nanoparticles’ surface, were characterized in terms of particle size and distribution. Next, they were subjected to photocatalytic studies with 1,3-diphenylisobenzofuran, a known singlet oxygen quencher. The applicability of the obtained hybrid material consisting of titanium(IV) oxide P25 nanoparticles and magnesium(II) porphyrazine derivative was assessed in photocatalytic studies with selected active pharmaceutical ingredients, such as diclofenac sodium salt and ibuprofen.


Author(s):  
María Fabiana Jorge

With the outbreak of the Coronavirus there is a new realization of the vulnerabilities of the U.S. drug supply chain. However, while such concerns may have been amplified by the pandemic, they preceded Covid-19 and were well documented before 2020. Indeed, in past years the U.S. Congress held several hearings addressing potential vulnerabilities in the U.S. drug supply chain, in part due to the increasing dependency on China as a dominant supplier of active pharmaceutical ingredients (APIs) and some finished pharmaceutical products. These vulnerabilities go well beyond health policy and constitute a national security concern. The article addresses how U.S. trade policy plays a significant role in shaping the pharmaceutical industry at home and abroad and is in part responsible for some of the current vulnerabilities of the U.S. drug supply chain.


2021 ◽  
Vol 13 (5) ◽  
pp. 575-594
Author(s):  
Dylan O'Flynn ◽  
Jenny Lawler ◽  
Azeez Yusuf ◽  
Anne Parle-McDermott ◽  
Denise Harold ◽  
...  

Active pharmaceutical ingredients (APIs) are increasingly being identified as contaminants of emerging concern (CECs).


Sign in / Sign up

Export Citation Format

Share Document