Chalcogenide Glass Microfibers for Mid-Infrared Optics

Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 497
Author(s):  
Dawei Cai ◽  
Yu Xie ◽  
Xin Guo ◽  
Pan Wang ◽  
Limin Tong

With diameters close to the wavelength of the guided light, optical microfibers (MFs) can guide light with tight optical confinement, strong evanescent fields and manageable waveguide dispersion and have been widely investigated in the past decades for a variety of applications. Compared to silica MFs, which are ideal for working in visible and near-infrared regions, chalcogenide glass (ChG) MFs are promising for mid-infrared (mid-IR) optics, owing to their easy fabrication, broad-band transparency and high nonlinearity, and have been attracting increasing attention in applications ranging from near-field coupling and molecular sensing to nonlinear optics. Here, we review this emerging field, mainly based on its progress in the last decade. Starting from the high-temperature taper drawing technique for MF fabrication, we introduce basic mid-IR waveguiding properties of typical ChG MFs made of As2S3 and As2Se3. Then, we focus on ChG-MF-based passive optical devices, including optical couplers, resonators and gratings and active and nonlinear applications of ChG MFs for mid-IR Raman lasers, frequency combs and supercontinuum (SC) generation. MF-based spectroscopy and chemical/biological sensors are also introduced. Finally, we conclude the review with a brief summary and an outlook on future challenges and opportunities of ChG MFs.

Author(s):  
Alexander J. Lind ◽  
Abijith S. Kowligy ◽  
Henry Timmers ◽  
Flavio C. Cruz ◽  
Myles C. Silfies ◽  
...  

2006 ◽  
Vol 14 (23) ◽  
pp. 11222 ◽  
Author(s):  
Markus Brehm ◽  
Albert Schliesser ◽  
Fritz Keilmann

2020 ◽  
Vol 28 (25) ◽  
pp. 38304
Author(s):  
Shuisen Jiang ◽  
Changlei Guo ◽  
Hongyan Fu ◽  
Kaijun Che ◽  
Huiying Xu ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 1353 ◽  
Author(s):  
Joel J. Nunes ◽  
Richard W. Crane ◽  
David Mabwa ◽  
David Furniss ◽  
Mark Farries ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Andreas Ø. Svela ◽  
Jonathan M. Silver ◽  
Leonardo Del Bino ◽  
Shuangyou Zhang ◽  
Michael T. M. Woodley ◽  
...  

AbstractAs light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential. We demonstrate that the introduction of an additional scatterer into the near field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in the microresonator by more than 30 dB. The method relies on controlling the scatterer position such that the intrinsic and scatterer-induced backpropagating fields destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs, which both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which back reflections could negatively impact the stability of laser sources or other components.


Author(s):  
Xue Zhou ◽  
Jinmeng Xiang ◽  
Jiming Zheng ◽  
Xiaoqi Zhao ◽  
Hao Suo ◽  
...  

Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) light source have great potential in non-destructive detection, promoting plant growth and night vision applications, while the discovery of a broad-band NIR phosphor still...


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fenghao Sun ◽  
Hui Li ◽  
Shanshan Song ◽  
Fei Chen ◽  
Jiawei Wang ◽  
...  

Abstract Using single-shot velocity map imaging technique, explosion imaging of different ion species ejected from 50 nm SiO2 nanoparticles are obtained excitedly by strong near-infrared and ultraviolet femtosecond laser fields. Characteristic momentum distributions showing forward emission of the ions at low excitation intensities and shock wave behaviors at high intensities are observed. When the excitation intensity is close to the dissociative ionization threshold of the surface molecules, the resulting ion products can be used to image the instant near-field distributions. The underlying dynamics of shock formation are simulated by using a Coulomb explosion model. Our results allow one to distinguish the ultrafast strong-field response of various molecular species in nanosystems and will open a new way for further exploration of the underlying dynamics of laser-and-nanoparticle interactions.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
H Hilderink

Abstract The four-year Public Health Foresight Study (VTV) provides insight into the most important societal challenges for public health and health care in the Netherlands. The seventh edition of the Dutch Public Health Foresight study was published in 2018, with an update in 2020. In this update a business-as-usual or Trend Scenario was developed using 2018 as a base year. In the trend scenario demographic and epidemiological projections have been used to depict the future trends regarding ageing, health, disease, health behaviors, health expenditures and health inequalities. Next, these trends are used to identify the most important future challenges and opportunities for public health. In the 2020 update, special attentions is given to climate change and the local living environment and their impacts and interaction with public health outcomes. Trends in lifestyle-related lifestyle show both positive (smoking prevalence) and negative (overweight prevalence) future developments. Dementia will be the leading cause of mortality and disease burden in 2040 by far. Health care expenditures will double by 2040, with cancers showing the most rapid growth of all disease groups. The insights of this study are directly used as input for the National Health Policy Memorandum and for the National Prevention Accord.


Ceramics ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 20-40
Author(s):  
Ambreen Nisar ◽  
Cheng Zhang ◽  
Benjamin Boesl ◽  
Arvind Agarwal

Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densification tool to the fabrication of complex-shaped components, advanced functional materials, functionally gradient materials, interconnected materials, and porous filter materials for real-life applications. The broader application achieved by modification of the SPS technique can provide an alternative to conventional powder metallurgy methods as a scalable manufacturing process. The future challenges and opportunities in this emerging research field have also been identified and presented.


Sign in / Sign up

Export Citation Format

Share Document