scholarly journals Simulated Annealing Applied to HIO Method for Phase Retrieval

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 541
Author(s):  
Yicheng Zhang ◽  
Mingjie Sun

Phase retrieval utilizing Fourier amplitudes plays a significant role in image recovery. Iterative phase retrieval algorithms have been developed to retrieve phase information that cannot be recorded by detectors directly. However, iterative algorithms face the problem of being trapped in local minima due to the nonconvexity of phase retrieval, and most existing works addressed this by optimizing in multiple runs parallelly to improve the possibility that one of these could reach the global minimum. Alternatively, we propose in this work to increase the probability of reaching the global minimum with one arbitrary initial distribution by adapting simulated annealing in the standard hybrid input-output (HIO) algorithm. Numerical and experimental results demonstrate that the proposed method reconstructs images with mean square errors 50.12% smaller than those reconstructed by HIO. More importantly, the proposed method can be applied to any HIO-based algorithm with multiple runs to further improve the performance.

2018 ◽  
Vol 10 (9) ◽  
pp. 1072-1080 ◽  
Author(s):  
Yueshu Xu ◽  
Qian Ye ◽  
Guoxiang Meng

AbstractThe Misell algorithm is one of the most widely used phase retrieval holography methods for large reflector antennas to measure surface deformation. However, it usually locks in a local minimum because it heads downhill from an initial estimation without any consideration whether it heads for a global minimum or not. The core problem of the Misell algorithm is to find an initial estimation near the global minimum to avoid local stagnation. To cope with the problem, we construct a hybrid Misell algorithm, named modified very fast simulated annealing (MVFSA)-Misell algorithm, to search for the global minimum with a high efficiency. The algorithm is based on the combination of the MVFSA algorithm and Misell algorithm. Firstly, the MVFSA is utilized to obtain a rough position near the global minimum in limited steps. Then, the Misell algorithm starts from the rough position to converge to the global minimum with high speed and accuracy. The convergence characteristic of the proposed algorithm was discussed in detail through digital simulation. Simulation results show that the algorithm can reach global minimum in a very short time. Unlike the traditional Misell algorithm, the hybrid algorithm is not influenced by initial phase estimation.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


2021 ◽  
pp. 1-14
Author(s):  
Noura Hamze ◽  
Lukas Nocker ◽  
Nikolaus Rauch ◽  
Markus Walzthöni ◽  
Matthias Harders ◽  
...  

BACKGROUND: Accurate segmentation of connective soft tissues in medical images is very challenging, hampering the generation of geometric models for bio-mechanical computations. Alternatively, one could predict ligament insertion sites and then approximate the shapes, based on anatomical knowledge and morphological studies. OBJECTIVE: In this work, we describe an integrated framework for automatic modelling of human musculoskeletal ligaments. METHOD: We combine statistical shape modelling with geometric algorithms to automatically identify insertion sites, based on which geometric surface/volume meshes are created. As clinical use case, the framework has been applied to generate models of the forearm interosseous membrane. Ligament insertion sites in the statistical model were defined according to anatomical predictions following a published approach. RESULTS: For evaluation we compared the generated sites, as well as the ligament shapes, to data obtained from a cadaveric study, involving five forearms with 15 ligaments. Our framework permitted the creation of models approximating ligaments’ shapes with good fidelity. However, we found that the statistical model trained with the state-of-the-art prediction of the insertion sites was not always reliable. Average mean square errors as well as Hausdorff distances of the meshes could increase by an order of magnitude, as compared to employing known insertion locations of the cadaveric study. Using those, an average mean square error of 0.59 mm and an average Hausdorff distance of less than 7 mm resulted, for all ligaments. CONCLUSIONS: The presented approach for automatic generation of ligament shapes from insertion points appears to be feasible but the detection of the insertion sites with a SSM is too inaccurate, thus making a patient-specific approach necessary.


Author(s):  
Pavle Šćepanović ◽  
Frederik A. Döring

AbstractFor a broad range of applications, flight mechanics simulator models have to accurately predict the aircraft dynamics. However, the development and improvement of such models is a difficult and time consuming process. This is especially true for helicopters. In this paper, two rapidly applicable and implementable methods to derive linear input filters that improve the simulator model are presented. The first method is based on model inversion, the second on feedback control. Both methods are evaluated in the time domain, compared to recorded helicopter flight test data, and assessed based on root mean square errors and the Qualification Test Guide bounds. The best results were achieved when using the first method.


1944 ◽  
Vol 7 (53) ◽  
pp. 279-294
Author(s):  
G. H. Menzies

Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. F189-F195 ◽  
Author(s):  
Changchun Yin ◽  
Greg Hodges

The traditional algorithms for airborne electromagnetic (EM) inversion, e.g., the Marquardt-Levenberg method, generally run only a downhill search. Consequently, the model solutions are strongly dependent on the starting model and are easily trapped in local minima. Simulated annealing (SA) starts from the Boltzmann distribution and runs both downhill and uphill searches, rendering the searching process to easily jump out of local minima and converge to a global minimum. In the SA process, the calculation of Jacobian derivatives can be avoided because no preferred searching direction is required as in the case of the traditional algorithms. We apply SA technology for airborne EM inversion by comparing the inversion with a thermodynamic process, and we discuss specifically the SA procedure with respect to model configuration, random walk for model updates, objective function, and annealing schedule. We demonstrate the SA flexibility for starting models by allowing the model parameters to vary in a large range (far away from the true model). Further, we choose a temperature-dependent random walk for model updates and an exponential cooling schedule for the SA searching process. The initial temperature for the SA cooling scheme is chosen differently for different model parameters according to their resolvabilities. We examine the effectiveness of the algorithm for airborne EM by inverting both theoretical and survey data and by comparing the results with those from the traditional algorithms.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Lin Lin ◽  
Fang Wang ◽  
Shisheng Zhong

Prediction technology for aeroengine performance is significantly important in operational maintenance and safety engineering. In the prediction of engine performance, to address overfitting and underfitting problems with the approximation modeling technique, we derived a generalized approximation model that could be used to adjust fitting precision. Approximation precision was combined with fitting sensitivity to allow the model to obtain excellent fitting accuracy and generalization performance. Taking the Grey model (GM) as an example, we discussed the modeling approach of the novel GM based on fitting sensitivity, analyzed the setting methods and optimization range of model parameters, and solved the model by using a genetic algorithm. By investigating the effect of every model parameter on the prediction precision in experiments, we summarized the change regularities of the root-mean-square errors (RMSEs) varying with the model parameters in novel GM. Also, by analyzing the novel ANN and ANN with Bayesian regularization, it is concluded that the generalized approximation model based on fitting sensitivity can achieve a reasonable fitting degree and generalization ability.


2017 ◽  
Vol 10 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Wengang Zhang ◽  
Guirong Xu ◽  
Yuanyuan Liu ◽  
Guopao Yan ◽  
Dejun Li ◽  
...  

Abstract. This paper is to investigate the uncertainties of microwave radiometer (MWR) retrievals in snow conditions and also explore the discrepancies of MWR retrievals in zenith and off-zenith observations. The MWR retrievals were averaged in a ±15 min period centered at sounding times of 00:00 and 12:00 UTC and compared with radiosonde observations (RAOBs). In general, the MWR retrievals have a better correlation with RAOB profiles in off-zenith observations than in zenith observations, and the biases (MWR observations minus RAOBs) and root mean square errors (RMSEs) between MWR and RAOB are also clearly reduced in off-zenith observations. The biases of temperature, relative humidity, and vapor density decrease from 4.6 K, 9 %, and 1.43 g m−3 in zenith observations to −0.6 K, −2 %, and 0.10 g m−3 in off-zenith observations, respectively. The discrepancies between MWR retrievals and RAOB profiles by altitude present the same situation. Cases studies show that the impact of snow on accuracies of MWR retrievals is more serious in heavy snowfall than in light snowfall, but off-zenith observation can mitigate the impact of snowfall. The MWR measurements become less accurate in snowfall mainly due to the retrieval algorithm, which does not consider the effect of snow, and the accumulated snow on the top of the radome increases the signal noise of MWR measurements. As the snowfall drops away by gravity on the sides of the radome, the off-zenith observations are more representative of the atmospheric conditions for RAOBs.


Sign in / Sign up

Export Citation Format

Share Document