scholarly journals Instability of Vertical Throughflows in Bidisperse Porous Media

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 821-828
Author(s):  
Florinda Capone ◽  
Roberta De Luca

In this paper, the instability of a vertical fluid motion, or throughflow, is investigated in a horizontal bidisperse porous layer that is uniformly heated from below. By means of the order-1 Galerkin approximation method, the critical Darcy–Rayleigh number for the onset of steady instability is determined in closed form. The coincidence between the linear instability threshold and the global nonlinear stability threshold, in the energy norm, is shown.

Author(s):  
B. Straughan

A bidispersive porous material is one which has usual pores but additionally contains a system of micro pores due to cracks or fissures in the solid skeleton. We present general equations for thermal convection in a bidispersive porous medium when the permeabilities, interaction coefficient and thermal conductivity are anisotropic but symmetric tensors. In this case, we show exchange of stabilities holds and fluid movement will commence via stationary convection, and additionally we show the global nonlinear stability threshold is the same as the linear instability one. Attention is then focused on the case where the interaction coefficient and thermal conductivity are isotropic, and the permeability is isotropic in the horizontal directions, although the permeability in the vertical direction is different. The nonlinear stability threshold is calculated in this case and numerical results are presented and discussed in detail.


Author(s):  
Florinda Capone ◽  
Jacopo A. Gianfrani

AbstractThe onset of natural convection in a fluid-saturated anisotropic porous layer, which rotates about the vertical axis, under the hypothesis of local thermal non-equilibrium, is analysed. Since the porosity of the medium is assumed to be high, the more suitable Darcy-Brinkman model is adopted. Linear instability analysis of the conduction solution is carried out. Nonlinear stability with respect to $$L^2$$ L 2 -norm is performed in order to prove the coincidence between the linear instability and the global nonlinear stability thresholds. The effect of both rotation and thermal and mechanical anisotropies on the critical Rayleigh number for the onset of instability is discussed.


2017 ◽  
Vol 18 (2) ◽  
pp. 196-211 ◽  
Author(s):  
Mehdi Ahmadi

In this paper, to achievement the effect of increase number of heating components arrangement on the rate of heat transfer of natural convection, that others have been less noticed. Therefore, in each stage increase the number of heating components so much the space occupied by them remains constant. Then by calculating the amount of heat transfer in different Rayleigh number became clear that minify and distributing heating solid phase in the enclosure increases the total Nusselt number and heat transfer, One reason could be high intensity of fluid motion in corners and near walls of the enclosure. In the next section with the solid phases on the enclosure can be made porous media model. As the results showed an increase in average Rayleigh number, Nusselt number has increased. Also be seen in the lower Darcy numbers, speed of increase in Nusselt number with increase in average Rayleigh number is higher. It can be said that in enclosure by any number of solid pieces with certain Darcy number, with an increase in average Rayleigh number, circular flow inside the enclosure becomes more intense and isothermal lines near walls with constant temperature are so dense, that represents an increase in rate of heat transfer. Also by increasing the Darcy number, rate of heat transfer from the porous media has decreased, as regards that a large share of heat transfer in porous media is done by conduction, although increasing Darcy number increases heat transfer of natural convection but decrease a heat transfer of conduction, therefore decrease total of heat transfer.


Author(s):  
F. Capone ◽  
M. Gentile ◽  
G. Massa

AbstractThe onset of thermal convection in anisotropic rotating bidisperse porous media is investigated. The optimal result concerning the coincidence between linear instability and nonlinear stability thresholds with respect the $$L^2$$ L 2 -norm is obtained.


2021 ◽  
Author(s):  
Florinda Capone ◽  
Roberta De Luca ◽  
Giuliana Massa

AbstractThermal convection in a horizontally isotropic bi-disperse porous medium (BDPM) uniformly heated from below is analysed. The combined effects of uniform vertical rotation and Brinkman law on the stability of the steady state of the momentum equations in a BDPM are investigated. Linear and nonlinear stability analysis of the conduction solution is performed, and the coincidence between linear instability and nonlinear stability thresholds in the $$L^2$$ L 2 -norm is obtained.


Author(s):  
B. Straughan

This paper investigates thermal convection in an anisotropic bidisperse porous medium. A bidisperse porous medium is one which possesses the usual pores, but in addition, there are cracks or fissures in the solid skeleton and these give rise to a second porosity known as micro porosity. The novelty of this paper is that the macro permeability and the micro permeability are each diagonal tensors but the three components in the vertical and in the horizontal directions may be distinct in both the macro and micro phases. Thus, there are six independent permeability coefficients. A linear instability analysis is presented and a fully nonlinear stability analysis is inferred. Several Rayleigh number and wavenumber calculations are presented and it is found that novel cell structures are predicted which are not present in the single porosity case.


Author(s):  
B Straughan

We show that the global nonlinear stability threshold for convection with a thermal non-equilibrium model is exactly the same as the linear instability boundary. This result is shown to hold for the porous medium equations of Darcy, Forchheimer or Brinkman. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. The equivalence of the linear instability and nonlinear stability boundaries is also demonstrated for thermal convection in a non-equilibrium model with the Darcy law, when the layer rotates with a constant angular velocity about an axis in the same direction as gravity.


Author(s):  
Sunil ◽  
Amit Mahajan

A nonlinear (energy) stability analysis is performed for a magnetized ferrofluid layer heated from below, in the stress-free boundary case. By introducing a suitable generalized energy functional, a rigorous nonlinear stability result is derived for a thermoconvective magnetized ferrofluid. The mathematical emphasis is on how to control the nonlinear terms caused by the magnetic body and inertia forces. It is found that the nonlinear critical stability magnetic thermal Rayleigh number does not coincide with that of the linear instability analysis, and thus indicates that the subcritical instabilities are possible. However, it is noted that, in the case of non-ferrofluid, global nonlinear stability Rayleigh number is exactly the same as that for linear instability. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of magnetic parameter, M 3 , on subcritical instability region has also been analysed. It is shown that with the increase of magnetic parameter, M 3 , the subcritical instability region between the two theories decreases quickly. We also demonstrate coupling between the buoyancy and the magnetic forces in the nonlinear energy stability analysis.


Author(s):  
Florinda Capone ◽  
Maurizio Gentile ◽  
Jacopo A. Gianfrani

Abstract The onset of thermal convection in an anisotropic horizontal porous layer heated from below and rotating about vertical axis, under local thermal non-equilibrium hypothesis is studied. Linear and nonlinear stability analysis of the conduction solution is performed. Coincidence between the linear instability and the global nonlinear stability thresholds with respect to the L2—norm is proved. Article Highlights A necessary and sufficient condition for the onset of convection in a rotating anisotropic porous layer has been obtained. It has been proved that convection can occur only through a steady motion. A detailed proof is reported thoroughly. Numerical analysis shows that permeability promotes convection, while thermal conductivities and rotation stabilize conduction.


Sign in / Sign up

Export Citation Format

Share Document