scholarly journals Edible Chitosan/Propolis Coatings and Their Effect on Ripening, Development of Aspergillus flavus, and Sensory Quality in Fig Fruit, during Controlled Storage

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 112
Author(s):  
Pablo F. Aparicio-García ◽  
Rosa I. Ventura-Aguilar ◽  
Juan C. del Río-García ◽  
Mónica Hernández-López ◽  
Dagoberto Guillén-Sánchez ◽  
...  

Biodegradable alternatives for the control of Aspergillus flavus in fig fruit were tested with the application of coatings based on chitosan (CS) and propolis (P). To potentiate the fungicidal effect, nanoparticles of these two (CSNPs and PNPs) were also considered. The objectives of this research were to evaluate the effect of different formulations on: (a) the ripening process of the fig, (b) the incidence of A. flavus and the production of aflatoxins, and (c) the acceptance of the treated fruit by a panel. The nanostructured coatings did not influence the ripening process of the fruit during the 12 days of storage, however, the antioxidant activity increased by approximately 30% with the coating CS + PNPs + P. The figs treated with CS + CSNPs + PNPs + P, inhibited the growth of the fungus by about 20% to 30% under laboratory and semi-commercial conditions. For all treatments, the aflatoxin production was lower than 20 ppb compared to the control with values of c.a. 250 ppb. The sensory quality was acceptable among the panel. The edible coatings can be a non-toxic alternative for post-harvest preservation and the consumption of fig fruit. The next step will be its inclusion and evaluation at a commercial level in packing houses.

Author(s):  
Efstathia Skotti ◽  
Nefeli Sophia Sotiropoulou ◽  
Iliada Lappa ◽  
Maria Kaiafa ◽  
Dimitrios Tsitsigiannis ◽  
...  

Lemon balm extracts by dry plant material of Melissa officinalis were tested against their efficacy against for different fungal species Alternaria alternata, Fusarium oxysporum, Aspergillus flavus and Beauveria bassiana. The aqueous phase of the extract was evaluated for antioxidant, antifungal and also anti-aflatoxigenic activity. A synergism evaluation was also performed concerning, the small quantity of lemon balm polar essential oil compounds extracted into the infusion and the water soluble compounds in the extract. The experiments were conducted in solid cultures and the growth inhibition was demonstrated by measuring mycelial diameter. Additionally, the effect on conidia production was also demonstrated. Lemon balm was also used for in situ test on Pistachia vera seed against Aspergillus flavus growth and aflatoxin production. Results revealed enhancement of fungal growth by lemon balm extracts however total inhibition of aflatoxins production on Pistachia vera seeds was observed, and both actions were tried to attributed to volatile and water soluble compounds identified based on GC/MS, HPLC/DAD and LC/MS, and the observed antioxidant activity. Volatile and water - soluble compounds found to be in absolute synergism in mycelium growth enhancement and the observed anti-aflatoxigenic activity addressed to the high antioxidant activity observed and synergistic action between the other water soluble phenolic compounds identified in the extract. The findings of this study underline the high biological active potential of lemon balm extracts under various screening test since for the first time full phytochemical analysis of lemon balm extracts.


2020 ◽  
Vol 6 (4) ◽  
pp. 383
Author(s):  
Premila Narayana Achar ◽  
Pham Quyen ◽  
Emmanuel C. Adukwu ◽  
Abhishek Sharma ◽  
Huggins Zephaniah Msimanga ◽  
...  

Aspergillus species are known to cause damage to food crops and are associated with opportunistic infections in humans. In the United States, significant losses have been reported in peanut production due to contamination caused by the Aspergillus species. This study evaluated the antifungal effect and anti-aflatoxin activity of selected plant-based essential oils (EOs) against Aspergillus flavus in contaminated peanuts, Tifguard, runner type variety. All fifteen essential oils, tested by the poisoned food technique, inhibited the growth of A. flavus at concentrations ranging between 125 and 4000 ppm. The most effective oils with total clearance of the A. flavus on agar were clove (500 ppm), thyme (1000 ppm), lemongrass, and cinnamon (2000 ppm) EOs. The gas chromatography-mass spectrometry (GC-MS) analysis of clove EO revealed eugenol (83.25%) as a major bioactive constituent. An electron microscopy study revealed that clove EO at 500 ppm caused noticeable morphological and ultrastructural alterations of the somatic and reproductive structures. Using both the ammonia vapor (AV) and coconut milk agar (CMA) methods, we not only detected the presence of an aflatoxigenic form of A. flavus in our contaminated peanuts, but we also observed that aflatoxin production was inhibited by clove EO at concentrations between 500 and 2000 ppm. In addition, we established a correlation between the concentration of clove EO and AFB1 production by reverse-phase high-performance liquid chromatography (HPLC). We demonstrate in our study that clove oil could be a promising natural fungicide for an effective bio-control, non-toxic bio-preservative, and an eco-friendly alternative to synthetic additives against A. flavus in Georgia peanuts.


1999 ◽  
Vol 62 (4) ◽  
pp. 414-417 ◽  
Author(s):  
J. J. FAN ◽  
J. H. CHEN

Welsh onion ethanol extracts were tested for their inhibitory activity against the growth and aflatoxin production of Aspergillus flavus and A. parasiticus. The survival of spores of A. flavus and A. parasiticus depended on both the extract concentration and the exposure time of the spores to the Welsh onion extracts. The mycelial growth of two tested fungi cultured on yeast extract–sucrose broth was completely inhibited in the presence of the Welsh onion ethanol extract at a concentration of 10 mg/ml during 30 days of incubation at 25°C. The extracts added to the cultures also inhibited aflatoxin production at a concentration of 10 mg/ml or permitted only a small amount of aflatoxin production with extract concentration of 5 mg/ml after 2 weeks of incubation. Welsh onion ethanol extracts showed more pronounced inhibitory effects against the two tested aflatoxin-producing fungi than did the same added levels of the preservatives sorbate and propionate at pH values near 6.5.


1985 ◽  
Vol 48 (12) ◽  
pp. 1040-1043 ◽  
Author(s):  
P. E. KOEHLER ◽  
L. R. BEUCHAT ◽  
M. S. CHHINNAN

Experiments were done to determine the influence of temperature (21, 30 and 37°C) and aw (0.76 to 0.98) on aflatoxin production by Aspergillus flavus on cowpea (Vigna unguiculata) seeds, meal and meal supplemented with onion. Larger quantities of aflatoxin were produced at 21 and 30°C than at 37°C. The highest amount of aflatoxin (2777 μg/20 g, dry weight basis) was observed in meal containing onion at aw 0.98 after 20 d of incubation at 21°C. A level of 870 |μg/20 g was detected in seeds at aw 0.95 after 14 d of incubation at 30°C. Meal at aw 0.96 supported production of 551 μg of aflatoxin per 20 g after 20 d at 30° C. Temperature had little influence on the optimal aw for aflatoxin production in cowpea meal. However, an increase in temperature resulted in a decreased optimal aw for aflatoxin production on whole cowpeas. When known quantities of aflatoxin were added to cowpea meal which was subsequently steamed for 5 min, only 29% was extractable using a variety of procedures, indicating that the toxin may be bound in some manner to cowpea constituents as a result of heat treatment.


2013 ◽  
Vol 6 (1) ◽  
pp. 43-50 ◽  
Author(s):  
V. Aiko ◽  
A. Mehta

Cinnamon, cardamom, star anise and clove were studied for their effect on growth of Aspergillus flavus and aflatoxin B1 (AFB1) synthesis. The experiments were carried out in yeast extract sucrose culture broth as well as in rice supplemented with spices. AFB1 produced was analysed qualitatively and quantitatively using thin layer chromatography and high performance liquid chromatography, respectively. At a concentration of 10 mg/ml, cardamom and star anise did not exhibit any antifungal or anti-aflatoxigenic activity in culture broth, whereas cinnamon and clove inhibited A. flavus growth completely. The minimum inhibitory concentrations of cinnamon and clove were 4 and 2 mg/ml, respectively. Concentrations of cinnamon and clove below their minimum inhibitory concentrations showed enhanced fungal growth, while AFB1 synthesis was reduced. Clove inhibited the synthesis of AFB1 significantly up to 99% at concentrations ≥1.0 mg/ml. The spices also inhibited AFB1 synthesis in rice at 5 mg/g, although fungal growth was not inhibited. Clove and cinnamon inhibited AFB1 synthesis significantly up to 99 and 92%, respectively, and star anise and cardamom by 41 and 23%, respectively. The results of this study suggest the use of whole spices rather than their essential oils for controlling fungal and mycotoxin contamination in food grains.


Sign in / Sign up

Export Citation Format

Share Document