scholarly journals The Effect of Temperature on the Hypersensitive Response (HR) in the Brassica napus–Leptosphaeria maculans Pathosystem

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 843
Author(s):  
Cunchun Yang ◽  
Zhongwei Zou ◽  
Wannakuwattewaduge Gerard Dilantha Fernando

Temperature is considered one of the crucial environmental elements in plant pathological interactions, and previous studies have indicated that there is a relationship between temperature change and host–pathogen interactions. The objective of this research is to investigate the link between temperature and the incompatible interactions of the host and pathogen. In this study, two Leptosphaeria maculans isolates (HCRT75 8-1 and HCRT77 7-2) and two Brassica napus genotypes (Surpass400 and 01-23-2-1) were selected. The selected B. napus genotypes displayed intermediate and resistant phenotypes. The inoculated seedlings were tested under three temperature conditions: 16 °C/10 °C, 22 °C/16 °C and 28 °C/22 °C (day/night: 16 h/8 h). Lesion measurements demonstrated that the necrotic lesions from the 28 °C/22 °C treatment were enlarged compared with the other two temperature treatments (i.e., 16 °C/10 °C and 22 °C/16 °C). The results of expression analysis indicated that the three temperature treatments displayed distinct differences in two marker genes (PATHOGENESIS–RELATED (PR) 1 and 2) for plant defense and one temperature-sensitive gene BONZAI 1 (BON1). Additionally, seven dpi at 22 °C/16 °C appeared to be the optimal pre-condition for the induction of PR1 and 2. These findings suggest that B. napus responds to temperature changes when infected with L. maculans.

2017 ◽  
Vol 13 (11) ◽  
pp. 1515-1526 ◽  
Author(s):  
Aliénor Lavergne ◽  
Fabio Gennaretti ◽  
Camille Risi ◽  
Valérie Daux ◽  
Etienne Boucher ◽  
...  

Abstract. Oxygen isotopes in tree rings (δ18OTR) are widely used to reconstruct past climates. However, the complexity of climatic and biological processes controlling isotopic fractionation is not yet fully understood. Here, we use the MAIDENiso model to decipher the variability in δ18OTR of two temperature-sensitive species of relevant palaeoclimatological interest (Picea mariana and Nothofagus pumilio) and growing at cold high latitudes in North and South America. In this first modelling study on δ18OTR values in both northeastern Canada (53.86° N) and western Argentina (41.10° S), we specifically aim at (1) evaluating the predictive skill of MAIDENiso to simulate δ18OTR values, (2) identifying the physical processes controlling δ18OTR by mechanistic modelling and (3) defining the origin of the temperature signal recorded in the two species. Although the linear regression models used here to predict daily δ18O of precipitation (δ18OP) may need to be improved in the future, the resulting daily δ18OP values adequately reproduce observed (from weather stations) and simulated (by global circulation model) δ18OP series. The δ18OTR values of the two species are correctly simulated using the δ18OP estimation as MAIDENiso input, although some offset in mean δ18OTR levels is observed for the South American site. For both species, the variability in δ18OTR series is primarily linked to the effect of temperature on isotopic enrichment of the leaf water. We show that MAIDENiso is a powerful tool for investigating isotopic fractionation processes but that the lack of a denser isotope-enabled monitoring network recording oxygen fractionation in the soil–vegetation–atmosphere compartments limits our capacity to decipher the processes at play. This study proves that the eco-physiological modelling of δ18OTR values is necessary to interpret the recorded climate signal more reliably.


Author(s):  
Zhongwei Zou ◽  
Fei Liu ◽  
Shuanglong Huang ◽  
DILANTHA GERARD FERNANDO

Proteins containing Valine-glutamine (VQ) motifs play important roles in plant growth and development, as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus L.) worldwide. H; however, the identification of B. napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome genome-wide identification and characterization of the VQ gene family in B. napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand B. napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase4 substrate1 (MKS1) gene) in a blackleg-susceptible canola variety Westar. Overexpression The overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage. H; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the SA salicylic acid (SA)- and jasmonic acid (JA )-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in the defense against L. maculans.


1977 ◽  
Vol 17 (86) ◽  
pp. 445 ◽  
Author(s):  
N Thurling ◽  
LA Venn

The responses of 53 cultivars of the rapeseed species Brassica napus and Brassica campestris to infection by three different populations of the blackleg fungus, Leptosphaeria maculans, were examined in a controlled environment. Significant variation in disease development was observed between cultivars as well as between fungal populations which had been derived from diseased stubble collected at widely separated sites in Western Australia. A large proportion of the cultivars tested were either susceptible or only slightly resistant to infection by each of the three fungal populations whereas only one cultivar, Zollerngold, was highly resistant to all fungal populations. Several other cultivars, however, were resistant to one population and susceptible or slightly resistant to the other two. In these cases, marked interactions between host and parasite were evident, some cultivars being substantially more resistant than others to infection by spores from a particular population.


2017 ◽  
Author(s):  
Aliénor Lavergne ◽  
Fabio Gennaretti ◽  
Camille Risi ◽  
Valérie Daux ◽  
Etienne Boucher ◽  
...  

Abstract. Oxygen isotopes in tree-rings (δ18OTR) are widely used to reconstruct past climates. However, the complexity of climatic and biological processes controlling isotopic fractionation is not yet fully understood. Here, we use the MAIDENiso model to decipher the variability of δ18OTR of two temperature-sensitive species of relevant paleoclimatological interest (Picea mariana and Nothofagus pumilio) and growing at cold high-latitudes in North and South America. In this first modelling study on δ18OTR values in both northeastern Canada (53.86° N) and western Argentina (41.10° S), we specifically aim at: (1) evaluating the predictive skill of MAIDENiso to simulate δ18OTR values, (2) identifying the physical processes controlling δ18OTR by mechanistic modelling and, (3) defining the origin of the temperature signal recorded in the two species. Although the linear regression models used here to predict daily δ18O of precipitation (δ18OP) may need to be improved in the future, the resulting daily δ18OP values adequately reproduce observed (from weather stations) and simulated (by global circulation model) δ18OP series. The δ18OTR values of the two species are correctly simulated using the δ18OP estimation as MAIDENiso input, although some offset in mean δ18OTR levels is observed for the South American site. For both species, the variability of δ18OTR series is more likely linked to the effect of temperature on isotopic enrichment of the leaf water rather than on the isotopic composition of the source water. We show that MAIDENiso is a powerful tool for investigating isotopic fractionation processes but that the lack of a denser isotope-enabled monitoring network recording oxygen fractionation in the soil-vegetation-atmosphere compartments limits our capacity to decipher the processes at play. This study proves that the eco-physiological modelling of δ18OTR values is necessary to interpret the recorded climate signal more reliably.


2010 ◽  
Vol 47 (3) ◽  
pp. 359-365 ◽  
Author(s):  
Anh-Minh Tang ◽  
Yu-Jun Cui ◽  
Li-Xin Qian ◽  
Pierre Delage ◽  
Wei-Min Ye

The osmotic technique was calibrated at various temperatures (20–40 °C) using a high-capacity tensiometer. The effect of temperature on the calibration curve of the high-capacity tensiometer in the positive range has been found to be insignificant, i.e., about 0.03%/°C. The measurement at ambient temperature shows that the suction value is not significantly dependent either on the molar mass of polyethylene glycol (PEG) or on the molecular weight cutoff (MWCO) of the semipermeable cellulose membrane. On the other hand, the matric suction measured in the present work by tensiometer was lower than the total suction found in the literature measured by psychrometer. This shows that the so-called membrane effects must be characterized by not only the crossing of PEG molecules but also other complex phenomena. The calibration at controlled temperatures showed a slight suction decrease of 1%/°C. One possible explanation for this decrease is that increasing the temperature decreases the viscosity of PEG solutions, possibly accelerating the crossing of PEG molecules. It is also possible that increasing the temperature changes the physicochemical properties of the PEG solutions, resulting in a suction decrease.


1983 ◽  
Vol 96 (6) ◽  
pp. 1592-1600 ◽  
Author(s):  
T R Manney ◽  
P Jackson ◽  
J Meade

Two mutants of Saccharomyces cerevisiae have been isolated from normal haploid MAT alpha strains and characterized as having temperature-sensitive, pleiotropic phenotypes for functions associated with mating. At the permissive temperature, 23 degrees C, they were found to behave as normal MAT alpha haploids with respect to mating efficiency, sporulation in diploids formed with MAT a strains, secretion of alpha-factor, and failure to secrete the MATa-specific products, a-factor and Barrier. At higher temperatures they were found to decline in mating and sporulation efficiency and to express the a-specific functions. Genetic analysis established that one of these mutants, PE34, carries a temperature-sensitive allele of the MAT alpha 2 gene and that the other, PD7, carries a temperature-sensitive allele of the TUP1 gene.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gigi Y. Lau ◽  
Georgina K. Cox ◽  
John D. Stieglitz ◽  
Daniel D. Benetti ◽  
Martin Grosell

Abstract Maintaining energy balance over a wide range of temperatures is critical for an active pelagic fish species such as the mahi-mahi (Coryphaena hippurus), which can experience rapid changes in temperature during vertical migrations. Due to the profound effect of temperature on mitochondrial function, this study was designed to investigate the effects of temperature on mitochondrial respiration in permeabilized heart and red skeletal muscle (RM) fibres isolated from mahi-mahi. As RM is thought to be more anatomically isolated from rapid ambient temperature changes compared to the myocardium, it was hypothesized that heart mitochondria would be more tolerant of temperature changes through a greater ability to match respiratory capacity to an increase in temperature and to maintain coupling, when compared to RM mitochondria. Results show that heart fibres were more temperature sensitive and increased respiration rate with temperature increases to a greater degree than RM. Respiratory coupling ratios at the three assay temperatures (20, 26, and 30 °C), revealed that heart mitochondria were less coupled at a lower temperature (26 °C) compared to RM mitochondria (30 °C). In response to an in vitro acute temperature challenge, both tissues showed irreversible effects, where both heart and RM increased uncoupling whether the assay temperature was acutely changed from 20 to 30 °C or 30 to 20 °C. The findings from this study indicate that mahi-mahi heart mitochondria were more temperature sensitive compared to those from RM.


1999 ◽  
Vol 89 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Irénée Somda ◽  
Régine Delourme ◽  
Michel Renard ◽  
Hortense Brun

The Brassica napus-B. juncea recombinant line (MX), resistant to Leptosphaeria maculans, was produced by interspecific crosses and bears one gene (Jlm1) from the B. juncea B genome. We investigated whether this new resistance was race specific by characterizing protection against a large sample of L. maculans isolates. The pathogenicity of 119 isolates of L. maculans comprising 105 A-group isolates and 14 B-group isolates was studied at the cotyledon stage under controlled conditions using the MX line, the susceptible B. napus cultivar Westar, and the resistant B. juncea cultivar Picra. All but one of the isolates were pathogenic on ‘Westar’. Only 3 of the 105 A-group isolates caused very mild symptoms on ‘Picra’. Two of these strains were isolated from the MX line and the other from Sinapis arvensis. The other 102 strains caused hypersensitive-type responses. Most B-group isolates were pathogenic on ‘Picra’. There were differences in pathogenicity among A-group isolates tested on the MX line, whereas all B-group isolates were pathogenic on this line. A-group isolates obtained from the MX line were more frequently pathogenic on the MX line than those obtained from B. napus cultivars. One isolate from S. arvensis infected the MX line. These results suggest that the resistance of the MX line is unlikely to be durable. Thus, the new resistance gene Jlm1 should probably be used in association with other sources of resistance, in plant breeding schemes, to prevent the breakdown of this resistance.


1927 ◽  
Vol 10 (6) ◽  
pp. 961-985 ◽  
Author(s):  
Vladimir Pertzoff

1. The investigations dealing with the properties of casein as an acid were reviewed. 2. The solubility of uncombined casein in water was measured at 5°C. and found to be 0.70±0.1 mg. of N per 100 gm. of water. 3. Robertson's solubility measurements of casein in bases at various temperatures were recalculated and found to agree well with more recent measurements. 4. By combining the observations of several investigators, as well as the author's measurements of the solubility of casein, in base, at various temperatures, the following conclusions were reached: (a) The solubility of casein in base is affected by the temperature in a discontinuous manner. (b) There exist two ranges of temperature, one, extending from about 21° to 37°C. and the other from about 60° to 85°C. where the solubility of casein in base is practically independent of temperature. (c) From 37° to 60° the equivalent combining weight of casein rises from the value 2100 to about 3700 gm. 5. By comparing the values of base bound by 1 gm. of casein at the two temperature ranges with a constant, the value of base necessary to saturate the same amount of casein, it was found that the latter value is a common multiple of the former values, indicating the stoichiometric nature of the effect of temperature.


2018 ◽  
Vol 77 (6) ◽  
pp. 375-381
Author(s):  
K. M. Popov

Abstract. Influence of air temperature on the consumption of fuel and energy resources (FER) on train traction is due to a number of physical laws. The extent of this effect is specified in the Rules for Traction Settlement (RTS). At the same time, when rationing FER consumption for train traction, a specialized methodical base is used, which involves a different approach to accounting for the effect of temperature on FER consumption for train traction. At the same time in different documents of this base, the effects of low temperature on the absolute and specific consumption of fuel and energy resources on train traction are taken into account in a different way, which is due to the lack of consensus among specialists on the way this factor is taken into account. Specialists of JSC “VNIIZhT” carried out an analysis of a significant amount of driver’s routes data, results of which showed that the dependence of the specific flow rate on temperature, on the basis of which the corresponding influence coefficient is determined, needs to be periodically updated. In addition, when technically standardizing the consumption of fuel and energy resources (for the locomotive crew work site), the temperature effect coefficients need to be calculated for a specific work area and direction of motion on it, while using the average network coefficient values will lead to errors. When calculating additional flow of fuel and energy from the effect of temperature for electric multiple units (EMU), the equations of regression dependencies should be used, obtained by statistical processing of data on temperature changes and specific consumption of fuel and energy resources for EMU and determined for each series of EMU when working on a particular suburban area.


Sign in / Sign up

Export Citation Format

Share Document