scholarly journals Phytostabilization of Phosphate Mine Wastes Used as a Store-and-Release Cover to Control Acid Mine Drainage in a Semiarid Climate

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 900
Author(s):  
Meryem El Berkaoui ◽  
Mariam El Adnani ◽  
Rachid Hakkou ◽  
Ahmed Ouhammou ◽  
Najib Bendaou ◽  
...  

The abandoned Kettara pyrrhotite mine, located near Marrakech, Morocco, is an acid mine drainage (AMD) producer site. A store-and-release cover system made of phosphate wastes was built to prevent water infiltration and the formation of AMD. This cover system should be vegetated with appropriate plants to ensure its long-term sustainability and allow its reintegration in the surrounding ecosystem. Several indigenous plant species were studied. The choice of plant species was based mainly on their tolerance to trace elements contained in the phosphate wastes, and their low capacity to translocate these metals to their aboveground parts in order to limit the risk of pollutants transfer along the food chain. The main metals and metalloids (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) are determined in 13 dominant plants naturally colonizing the store-and-release cover and their rhizospheric soils. The results showed that the phosphate cover contained high concentrations of Cr (138.04 mg/kg), Cu (119.86 mg/kg) and Cd (10.67 mg/kg) exceeding the regulatory thresholds values (Cr > 100 mg/kg, Cu > 100 mg/kg, Cd > 3 mg/kg). The studied plants revealed no hyper-accumulation of metals and metalloids, and lower concentrations in shoots than in roots. Six species (Plantago afra, Festuca ovina, Aizoon hispanicum, Herniaria cinerea, Echium plantagineum and Asphodelus tenuifolius) have bioconcentration factors greater than 1, and weak translocation factors, identifying them as appropriate candidates for phytostabilization of the phosphate cover.

2021 ◽  
Vol 35 (1) ◽  
pp. 41-50
Author(s):  
Svetlana Bratkova

The formation of acid mine drainage (AMD) is a serious environmental problem in areas with mining and processing industries worldwide. Their generation is associated with chemical and biological processes of oxidation of sulfide minerals, mainly pyrite. Sources of AMD can be deposits of sulfide minerals and coal with a high content of pyrite sulfur, mining waste and some tailings. The impact of AMD on surface and groundwater in mining areas continues for decades after the cessation of extraction. An example of the negative impact of generated acid mine drainage on the state of surface waters is in the region of Madzharovo. Years after the cessation of mining, the waters at the discharge points "Momina Skala", "Harman Kaya" and "Pandak Dere" are characterized by low pH values and high concentrations of iron, copper, zinc, cadmium, lead and manganese.


2021 ◽  
Vol 47 (1) ◽  
pp. 1-18
Author(s):  
Keolebogile R. Sebogodi ◽  
Jonas K. Johakimu ◽  
B. Bruce Sithole

Acid mine drainage (AMD) is one of the repercussions that result from earth-moving activities around the sulfide-bearing mineral hosts. The detrimental effects associated with this AMD are driven by its characteristics, which include low pH and high concentrations of sulfate and toxic dissolved metals. Traditionally, the prevention and treatment of AMD are achieved by using technologies that use, amongst other, naturally occurring soils and carbonates. However, the continual use of these materials may eventually lead to their depletion. On the other hand, industrial by-products have been proven to occupying land that could have otherwise been used for profitable businesses. Additionally, the handling and maintenance of landfills are costly. In this current trend of a circular economy that is driven by industrial symbiosis, scientists are concerned with valorizing industrial by-products. One such by-product is the green liquor dregs (GLD) from Kraft mills. The neutralizing and geotechnical properties of these wastes have prompted the research pioneers to seek their potential use in handling the challenges associated with AMD. In this review, the formation AMD, trends in technologies for treatment and prevention of AMD are critically analyzed. This includes the feasibility of using GLD as an alternative, promising sustainable material.


2015 ◽  
Vol 15 (5) ◽  
pp. 1104-1112 ◽  
Author(s):  
Ling Ma ◽  
Xingquan Rao ◽  
Ping Lu ◽  
Shaowei Huang ◽  
Xiaoyang Chen ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 596 ◽  
Author(s):  
Alex Kalonji-Kabambi ◽  
Bruno Bussière ◽  
Isabelle Demers

The production of solid mine wastes is an integral part of the extraction and metallurgical processing of ores. The reclamation of highly reactive mine waste, with low neutralizing potential, is still a significant challenge for the mining industry, particularly when natural soils are not available close to the site. Some solid mine wastes present interesting hydro-geotechnical properties which can be taken advantage of, particularly for being used in reclamation covers to control acid mine drainage. The main objective of this research was to evaluate the use of mining materials (i.e., tailings and waste rock) in a cover with capillary barrier effects (CCBE) to prevent acid mine drainage (AMD) from highly reactive tailings. The first part of the project reproduced in this article involves context and laboratory validation of mining materials as suitable for a CCBE, while the companion paper reports laboratory and field results of cover systems made with mining materials. The main conclusions of the Part 1 of this study were that the materials studied (low sulfide tailings and waste rocks) had the appropriate geochemical and hydrogeological properties for use as cover materials in a CCBE. Results also showed that the cover mining materials are not acid-generating and that the LaRonde tailings are highly reactive with pH close to 2, with high concentrations of metals and sulfates.


2019 ◽  
Vol 11 (9) ◽  
pp. 4977-4989 ◽  
Author(s):  
Anna A. Bogush ◽  
Cosmina Dabu ◽  
Vera D. Tikhova ◽  
Jong Kyu Kim ◽  
Luiza C. Campos

Abstract Acid mine drainage (AMD) is the largest environmental problem facing the world mining and processing industry because it has low pH and can contain high concentrations of potential pollutants. Biomass ash (BA) can be considered as a potential material for AMD treatment. The main goal of this work was to investigate potential use of Biomass ash of CPK-LA and PK-LA types for AMD remediation. Four UK BAs from different fuels (i.e. straw, meat and bone meal, poultry litter), synthetic AMD, and raw AMDs (Belovo and Ursk) were used for the AMD treatment experiments. Batch experiments showed that in 1 h the biomass ash from straw combustion can effectively neutralise the synthetic AMD and the Belovo AMD with removal of potential pollutants at the liquid-to-solid ratio (L/S) of 100–250 and 10–50, respectively. The biomass ashes from straw and poultry litter combustion can effectively remove pollutants from the Ursk AMD at L/S 100 and adjust pH. The metal concentrations of those treated AMDs met receiving water quality standards. Potential pollutants precipitated as carbonate/hydroxide/sulphate, co-precipitated with Fe oxyhydroxides and Ca phosphates, and appeared as new phases such as Ca, Cu, Zn phosphates and Ca, Fe phosphates. This investigation is essential for development of appropriate, environmentally friendly and economically rational waste management. Graphic Abstract


CIM Journal ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
B. Vollick ◽  
A. F. Souza ◽  
C. Shamshoom ◽  
P. Maharaj ◽  
D. Bejan ◽  
...  

2009 ◽  
Vol 71-73 ◽  
pp. 557-560 ◽  
Author(s):  
Bo Wei Chen ◽  
Jian Kang Wen ◽  
Xing Yu Liu

An integrated sulfate reducing process was used to treat Acid Mine Drainage with high concentrations of Cu2+, Fe and SO42-. The water treatment system integrated a sulfidogenic UASB bioreactor with a precipitation reactor which was used to recover copper. Sodium lactate was used as energy source. The effective volume of the UASB reactor was 2 L and the hydraulic retention time was 12.57h. In the sulphate removal reactor, sulphate was removed from 21160 to 195 mg/L with a rate of 4427.8 mg/L/d. Cu2+ and Fe was removed by biologically generated S2- and OH- from 360 and 6520 to 0.049 mg/L and less than 10 mg/L respectively. The average COD, copper and iron removal rate was 2523.2, 15.21 and 274.98 mg/L/d separately. The effluent pH reached 6.0-7.0. The results showed potential usage of this bioreactor in treating Acid Mine Drainage.


2015 ◽  
Vol 50 (3) ◽  
pp. 279-286 ◽  
Author(s):  
Allison L. Mackie ◽  
Margaret E. Walsh

Acid mine drainage (AMD) is characterized as having low pH and high concentrations of sulfate and dissolved metals. This study compared treated water quality and sludge properties of three process technologies for AMD: conventional sedimentation, high density sludge (HDS), and ballasted flocculation. All three processes were found to be capable of removing regulated metals to concentrations below current Canadian discharge guidelines. However, ballasted flocculation was the only technology found to be able to meet the more stringent federal guidelines proposed for future implementation under the Fisheries' Act's Metal Mining Effluent Regulations. Specifically, arsenic and zinc concentrations in AMD treated by the conventional and HDS processes were above proposed future guidelines of 0.10 and 0.25 mg/L, respectively, while lead, copper, and nickel all met respective guidelines. Concentrations of all regulated contaminants were below proposed guidelines when treated by ballasted flocculation. The HDS process was found to produce a significantly more concentrated sludge than conventional sedimentation (i.e., higher solids content (19 ± 1% versus 7 ± 4% wet solids) and lower sludge volume index (SVI; 8.4 ± 0.8 versus 230 ± 20 mL/g)).


Sign in / Sign up

Export Citation Format

Share Document