scholarly journals In Vitro Propagation, Genetic Assessment, and Medium-Term Conservation of the Coastal Endangered Species Tetraclinis Articulata (Vahl) Masters (Cupressaceae) from Adult Trees

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Jorge Juan-Vicedo ◽  
Francisco Serrano-Martínez ◽  
Miriam Cano-Castillo ◽  
José Luis Casas

Tetraclinis articulata (Vahl) Masters is an endangered tree growing in coastal and arid environments that is widely exploited by the timber and resin industry, among other applications. In this context, the use of in vitro techniques is highly encouraged for its propagation. We present a protocol for micropropagation using twigs from adult trees as a source of explants. The Schenk and Hildebrandt basal medium (SH) supplemented with 30 g L−1 sucrose, 6.5 g L−1 plant agar, 4.0 mg L−1 6-benzyladenine (BA), and 0.05 mg L−1 1-naphthaleneacetic acid (NAA) provided the optimum multiplication rate (90.48 ± 9.52 explants with basal shoots and 2.58 ± 0.29 basal shoots per explant). Application of activated charcoal (AC) or ½ Knop solution in a liquid overlay produced significantly longer shoots. Supplementation of solid media with indole-3-butyric acid (IBA) or NAA gave low rooting percentages (<17%). Addition of 0.9 g L−1 AC improved rooting (40%) but rooting performance was optimal (66.7%) after a pulse treatment consisting of 4 h immersion in liquid SH medium without growth regulators, followed by 8 weeks of cultivation. Rooted microplants were successfully acclimatized (93.33%) in a peat moss and vermiculite mixture (1:1 v/v ratio). The genetic stability of the in vitro regenerated plantlets was confirmed using the randomly amplified polymorphic DNA (RAPD) technique. Explant survival and growth remained higher than 90% after 28 weeks of cold storage at both 4 °C and 10 °C. The protocol presented here allows for largescale T. articulata production and could be applied for both ex situ conservation strategies and industrial purposes.

2021 ◽  
Author(s):  
Yuan-yuan Meng ◽  
Shi-jie Song ◽  
Sven Landrein

Abstract Passiflora xishuangbannaensis (Passifloraceae) is endemic to a few sites of Mengyang nature reserve in Yunnan, Xishuangbanna and less than 40 individuals have been recorded. Nine Passiflora species are endemic to Yunnan with most species occurring in South America, making P. xishuangbannaensis highly significant and emblematic to the conservation work in the region. This study is designed to provide the first protocol for in vitro organogenesis and plant regeneration for ex situ conservation and reintroduction for an Asian Passiflora species. Using internodes, petioles and tendrils we optimize calli formation and root elongation using several plant growth regulators, individually or in combination. We also assess the genetic stability of regenerated cells. The maximum callus induction and shoot bud differentiation were both achieved on half Murashige and Skoog basal medium supplemented with 4.44 µM 6-Benzylaminopurine and 1.08 µM 1-Naphthaleneacetic acid. The best rooting was achieved from 30 days old, regenerated shoots on half Murashige and Skoog basal medium supplemented with 1.08 µM 1-Naphthaleneacetic acid. Micropropagated plants were subjected to inter simple sequence repeat markers analyses. Collectively, 86 bands were generated from 6 primers of which 12 bands were polymorphic, showing genetic variation between the regenerated plantlets and the original plant. Response to plant growth regulators was more specific than most other studies using South American species, which could be explained by the morphological and physiological differences between South American and Asian Passiflora species


Author(s):  
Rebaz Rasul Habas ◽  
Musa Turker ◽  
Fethi Ahmet Ozdemir

An efficient plant regeneration protocol was developed from in vitro germinated seeds of Petunia hybrida an ornamentally important plant in the family Solanaceae. Shoot tip and node explants of Petunia hybrida were cultured on MS basal medium supplemented with different concentrations and combinations of Benzyl amino purine (BAP), 1-Naphthaleneacetic acid (NAA), Indole-3-butyric acid (IBA) and Gibberellic acid (GA3). The highest shoot length was obtained from MS medium supplemented with 1 mg/l BAP + 1 mg/l NAA. The highest shoot number (3 shoots/explant) were obtained from MS medium supplemented with 0.6 mg/l BAP + 0.5 mg/l IBA. The isolated shoots were transferred to MS basal medium supplemented with different concentrations of GA3 ranging from 0.05, 0.2, 0.5 and 1 mg/l for shoot elongation. The highest shoot length (5.75 cm) was recorded from the MS medium supplemented with 0.2 mg/l GA3 +0.2 mg/l BAP. Rooting of regenerated shoots were achieved on MS medium supplemented with 0.1-1 mg/1 IBA and NAA. The regenerated shoots with well developed roots were successfully acclimatized and established in pots containing sterilized peat moss and grown under laboratory conditions with 70% survival rates.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Sunil Senapati ◽  
Subhashree Aparajita ◽  
Gyana Rout

AbstractA highly efficient protocol for in vitro regeneration of an indigenous, endangered medicinal plant Celastrus paniculatus was achieved using nodal explants. Murashige and Skoog (MS) basal medium supplemented with 0.5 mg/L 6-benzylaminopurine (BAP) and 0.1 mg/L naphthaleneacetic acid (NAA) showed maximum percentage of shoot multiplication (83.4%) with 8.2 shoots/explants. Maximum rooting of 73.3% with 4.8 roots/shoot was achieved on half-strength MS media supplemented with 0.5 mg/L indole-3-acetic acid (IAA) and the percentage of survival was 91% after acclimatization. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) marker study confirmed genetic stability for in vitro raised explants by showing 100% monomorphism. High multiplication rate associated with genetic stability ensure the efficacy of the present in vitro clonal propagation protocol of this important medicinal plant species.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 934
Author(s):  
Chris O’Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent development and implementation of crop cryopreservation protocols has increased the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro material. To preserve the greatest possible plant genetic resources globally for future food security and breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohesive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers promising complementary tools that can be used to promote this approach. These techniques can be employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds. This review will look at ex situ conservation, namely field repositories and in vitro storage for some of these economically important crops, focusing on conservation strategies for avocado. To date, cultivar-specific multiplication protocols have been established for maintaining multiple avocado cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for cryo-storage and regeneration of true-to-type clonal avocado plants.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7017 ◽  
Author(s):  
Alejandra Hernández-Terán ◽  
Ana Wegier ◽  
Mariana Benítez ◽  
Rafael Lira ◽  
Tania Gabriela Sosa Fuentes ◽  
...  

One of the best ex situ conservation strategies for wild germplasm is in vitro conservation of genetic banks. The success of in vitro conservation relies heavily on the micropropagation or performance of the species of interest. In the context of global change, crop production challenges and climate change, we face a reality of intensified crop production strategies, including genetic engineering, which can negatively impact biodiversity conservation. However, the possible consequences of transgene presence for the in vitro performance of populations and its implications for biodiversity conservation are poorly documented. In this study we analyzed experimental evidence of the potential effects of transgene presence on the in vitro performance of Gossypium hirsutum L. populations, representing the Mexican genetic diversity of the species, and reflect on the implications of such presence for ex situ genetic conservation of the natural variation of the species. We followed an experimental in vitro performance approach, in which we included individuals from different wild cotton populations as well as individuals from domesticated populations, in order to differentiate the effects of domestication traits dragged into the wild germplasm pool via gene flow from the effects of transgene presence. We evaluated the in vitro performance of five traits related to plant establishment (N = 300): propagation rate, leaf production rate, height increase rate, microbial growth and root development. Then we conducted statistical tests (PERMANOVA, Wilcoxon post-hoc tests, and NMDS multivariate analyses) to evaluate the differences in the in vitro performance of the studied populations. Although direct causality of the transgenes to observed phenotypes requires strict control of genotypes, the overall results suggest detrimental consequences for the in vitro culture performance of wild cotton populations in the presence of transgenes. This provides experimental, statistically sound evidence to support the implementation of transgene screening of plants to reduce time and economic costs in in vitro establishment, thus contributing to the overarching goal of germplasm conservation for future adaptation.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Yupi ISNAINI ◽  
Titien Ngatinem Praptosuwiryo

Abstract. Isnaini Y, Praptosuwiryo TNg. 2020. In vitro spore germination and early gametophyte development of Cibotium barometz (L.) J. Sm. in different media. Biodiversitas 21: 5373-5381. Cibotium barometz (L.) J. Sm. is known as the golden chicken fern and included in Appendix II of CITES. It is an important export commodity for traditional and modern medicine. Globally, populations of this species are under significant pressure due to overexploitation in the wild. In vitro culture is one of the technologies used for ex-situ propagation and conservation of rare and endangered ferns and lycophytes. This study’s objectives were: (i) to observe in vitro spore germination and early gametophyte development of C. barometz, and (ii) to determine the best culture medium for rapid spore germination and early development of the gametophytes. The sterilized spores were sown in half-strength Murashige & Skoog (½MS) basal medium supplemented with combinations of 6-Benzylaminopurine (BAP) and α-Naphthalene acetic acid (NAA). A factorial combination of four BAP concentrations (0, 2, 4, and 6 mg L-1) with four concentrations of NAA (0; 0.01; 0.03 and 0.05 mg L-1) created 16 treatments replicated in a Completely Randomized Design. Spore germination of C. barometz was observed to be Vittaria-type, and its prothallial development was Drynaria-type. Spore germination started 7-14 days after sowing. Young heart-shape gametophytes consisting of 110-240 cells were formed in 45-61 days after sowing. The two best spore culture media for rapid spore germination and development of C. barometz gametophytes were ½ MS with or without 2 mg L-1 BAP.


2020 ◽  
Vol 21 (20) ◽  
pp. 7459
Author(s):  
María Elena González-Benito ◽  
Miguel Ángel Ibáñez ◽  
Michela Pirredda ◽  
Sara Mira ◽  
Carmen Martín

Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.


2013 ◽  
Vol 5 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Aissam EL FINTI ◽  
Rachida EL BOULLANI ◽  
Naima AIT AABD ◽  
Fouad MSANDA ◽  
Mohammed A. SERGHINI ◽  
...  

Opuntia is one of the most widespread cacti, primarily due to their edible fruit and vegetable mass used as feed. The high demand for young plants of Opuntia made it necessary to find a rapid method of multiplication of the cactus, the safest method consisting in vitro micropropagation of species belonging to this genus. With aim of large production of plant material, a propagation system of three important prickly pear cactus cultivar (Opuntia ficus-indica) in Morocco was developed. Segments of healthy young cladode (containing one areole) were cultivated in Murashige and Skoog medium (MS) containing adenine sulfate (40 mg/1), monosodium phosphate (50 mg/l), sucrose (50 g/l), phytagel (0.3%) and benzyladenine (BA) at 22.2 μM, to start the process of micropropagation. In vitro-developed shoots from areoles were used as secondary explants to induce shoot development in the MS medium with 5 mg/l of BA. All of the three studied cultivars showed an important multiplication rate in this medium. ‘Sidi Ifni M’ (‘Moussa’) cultivar shows the greatest number of shoots followed by ‘Sidi Ifni A’ (‘Aissa’) and ‘Delahia’ 17.26, 14.12 and 12.13 respectively. Rooting of in vitro-generated shoots was achieved most efficiently on half-strength MS basal medium supplemented with 0.5 mg/l of indole-3-butyric acid (IBA) or IAA. Rooting frequencies were in the range from 95 to 100% and the highest mean number of root (19.1) was obtained with IBA for ‘Delahia’ cultivar. All micropropagated plants were transferred to greenhouse and all of them survived acclimatization process and showed good overall growth.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
Hazubska-Przybył

The genus Juniperus (of the Cupressaceae family) is the second most prevalent group of conifers on Earth. Juniper species are widely dispersed in the Northern Hemisphere, in Europe and Asia, and in Africa and Central America. Juniper species are resistant to dry climates and can adapt to difficult environmental conditions. Most juniper species are important in both ecological and economic terms. However, today, many forests in which junipers occur are being reduced in size due to both natural causes (fires, for example) and human activity (uncontrolled exploitation of forests, etc.). Also, climate changes may have adversely affected the range of populations of different juniper species. For this reason, some juniper species are now categorized as rare or endangered, and require immediate protective action. Therefore, there is an urgent need to develop effective strategies for ex situ conservation, including reliable procedures for Juniperus sp. reproduction for future reintroduction and restoration programs. The conservation strategies used until now with traditional forestry techniques (seed propagation, rooted cuttings, grafting) have not been satisfactory in many cases. Thus, increasing attention is being paid to the possibilities offered by in vitro culture technology, which enables the conservation and mass clonal propagation of different coniferous tree species. In this mini-review, we summarize the current state of knowledge regarding the use of various methods of the propagation of selected Juniperus species, with a particular emphasis on in vitro culture techniques.


2003 ◽  
Vol 83 (4) ◽  
pp. 873-876 ◽  
Author(s):  
A. N. Aziz ◽  
R. J. Sauvé ◽  
S. Zhou

Daylily (Hemerocallis sp. ‘Stella de Oro’) callus cultures initiated from ovules were bombarded with gold particles coated with plasmid harboring Basta® resistance gene. Resulting putative transgenic calli were selected after 3 wk on semi-solid Murashige and Skoog’s (MS) basal medium supplemented with 10 mg L-1 1-naphthaleneacetic acid, 2 mg L-1 6-benzylaminopurine and 3 mg L-1 phosphinothricin (PPT). Surviving calli regenerated shoots after 2 mo on semi-solid MS medium supplemented with 2 mg L-1 thiadiazuron and 1 mg L-1 PPT. Polymerase chain reaction and Southern blotting were used to confirm independent transformation events. Key words: Basta® resistance, in vitro, Hemerocallis


Sign in / Sign up

Export Citation Format

Share Document