scholarly journals Isolation and Characterization of Plant Growth-Promoting Endophytic Fungi from the Roots of Dendrobium moniliforme

Plants ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 5 ◽  
Author(s):  
Sujit Shah ◽  
Roshani Shrestha ◽  
Sabitri Maharjan ◽  
Marc-Andre Selosse ◽  
Bijaya Pant

The present study aims to identify the diverse endophytic fungi residing in the roots of Dendrobium moniliforme and their role in plant growth and development. Nine endophytic fungi were isolated from the root sections and characterized by molecular technique. Quantification of the indole acetic acid (IAA) compound by these endophytes was done. Further, Chemical profiling of R11 and R13 fungi was done by Gas Chromatography-Mass Spectroscopy (GC-MS). Asymbiotic seed derived protocorms of Rhynchostylis retusa was used for the plant growth assay to investigate the growth promoting activities of the fungal elicitor prepared from the isolated fungi from D. moniliforme. Among the isolated fungi, the relative dominant fungus was Fusarium sp. The R13 and R6 fungi were identified only at the genus level which concludes the fungi are of new species or strain. The indole acetic acid production was relatively higher in R10. Bioactive compound diversity was observed in the organic extract of R11 and R6. The presence of phenolic compound and essential oil suggest their contribution for the antimicrobial and antioxidant properties to their host plant, D. moniliforme. The plant growth assay result concluded, the fungal elicitor prepared from R10, Colletotrichum alatae was the best among all other for the plant growth activities.

2015 ◽  
Vol 3 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Mohamed A.M. El-Awady ◽  
Mohamed M. Hassan ◽  
Yassin M. Al-Sodany

This study was designed to isolate and characterize endophytic and rhizospheric bacteria associated with the halophyte plant Sesuvium verrucosum, grown under extreme salinity soil in Jeddah, Saudi Arabia. The plant growth promotion activities of isolated bacterial were evaluated in vitro. A total of 19 salt tolerant endophytic and rhizospheric bacterial isolates were obtained and grouped into six according to genetic similarity based on RAPD data. These six isolates were identified by amplification and partial sequences of 16S rDNA as Enterobacter cancerogenus,Vibrio cholerae, Bacillus subtilis, Escherichia coli and two Enterobacter sp. Isolates were then grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, and production of phytohormones such as indole-3-acetic acid, as well as 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. While, All of the six strains were negative for ACC deaminaseactivity, two isolates showed Nitrogen fixation activity, three isolates produce the plant hormone (Indole acetic acid) and two isolates have the activity of solubiliztion of organic phosphate. Among the six isolates, the isolate (R3) from the soil around the roots is able to perform the three previous growth promoting possibilities together and it is ideal for use in promoting the growth of plants under the high salinity conditions. This isolate is candidate to prepare a friendly biofertelizer that can be used for the improvement of the crops performance under salinity conditions.Int J Appl Sci Biotechnol, Vol 3(3): 552-560


2018 ◽  
Author(s):  
Xiaohui Wang ◽  
Changdong Wang ◽  
Chao Ji ◽  
Qian Li ◽  
Jiamiao Zhang ◽  
...  

AbstractBacillus amyloliquefaciens subsp. plantarum XH-9 is a plant-beneficial rhizobacterium that shows good antagonistic potential against phytopathogens by releasing diffusible and volatile antibiotics, and secreting hydrolytic enzymes. Furthermore, the XH-9 strain possesses important plant growth-promoting characteristics, including nitrogen fixation (7.92 ± 1.05 mg/g), phosphate solubilization (58.67 ± 4.20 μg/L), potassium solubilization (10.07 ± 1.26 μg/mL), and the presence of siderophores (4.92 ± 0.46 μg/mL), indole-3-acetic acid (IAA) (7.76 ± 0.51 μg/mL) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACC-deaminase) (4.67 ± 1.21 nmol/[mg•h]). Moreover, the XH-9 strain showed good capacities for wheat, corn, and chili root colonization, which are critical prerequisites for controlling soil-borne diseases as a bio-control agent. Real-time quantitative polymerase chain reaction experiments showed that the amount of Fusarium oxysporum DNA associated with the XH-9 strain after treatment significantly decreased compared with control group. Accordingly, wheat plants inoculated with the XH-9 strain showed significant increases in the plant shoot heights (14.20%), root lengths (32.25%), dry biomass levels (11.93%), and fresh biomass levels (16.28%) relative to the un-inoculated plants. The results obtained in this study suggest that the XH-9 strain has potential as plant-growth promoter and biocontrol agent when applied in local arable land to prevent damage caused by F. oxysporum and other phytopathogens.ImportancePlant diseases, particularly soilborne pathogens, play a significant role in the destruction of agricultural resources. Although these diseases can be controlled to some extent with crop and fungicides, while these measures increase the cost of production, promote resistance, and lead to environmental contamination, so they are being phased out. Plant growth-promoting rhizobacteria are an alternative to chemical pesticides that can play a key role in crop production by means of siderophore and indole-3-acetic acid production, antagonism to soilborne root pathogens, phosphate and potassium solubilization, and nitrogen fixation. These rhizobacteria can also promote a beneficial change in the microorganism community by significantly reducing its pathogenic fungi component. Their use is fully in accord with the principles of sustainability.


Author(s):  
Caroline F. Ajilogba ◽  
Olubukola O. Babalola ◽  
Patrick Adebola ◽  
Rasheed Adeleke

AbstractBambara groundnut, an underutilized crop has been proved to be an indigenous crop in Africa with the potential for food security. The rhizosphere of Bambara groundnut like other legumes contains several important bacteria that have not been explored for their plant growth-promoting properties. The aim of this research was to determine the potentials of rhizobacteria from Bambara groundnut soil samples as either biofertilizer or biocontrol agents or both to help provide sustainable agriculture in Africa and globally. Analyses of Bambara groundnut rhizospheric soil samples included chemical analysis such as nitrogen content analysis using extractable inorganic nitrogen method as well as cation exchangeable capacity using ammonium acetate method. Plant growth-promoting properties of isolated rhizobacteria tested include indole acetic acid, hydrogen cyanide, phosphate solubilization, 1-aminocyclopropane-1-carboxylate and ammonia production activities using standard methods. In addition, antifungal assay dual culture method was used to analyze the biocontrol properties of the isolates. Phylogenetic analysis using 16S rRNA was also carried out on the isolates. Isolated rhizobacteria from bambara groundnut rhizosphere were cultured. All the isolates were able to produce ammonia and 1-aminocyclopropane-1-carboxylate while 4.65%, 12.28% and 27.91% produced Hydrogen cyanide, Indole acetic acid and solubilized phosphate respectively, making them important targets as biocontrol and biofertilizer agents. The growth of Fusarium graminearum was suppressed in vitro by 6.98% of the isolates. Plant growth promoting activities of rhizobacteria from bambara groundnut rhizosphere reveals that it has great potentials in food security as biofertilizer and biocontrol agent against fungal and bacterial pathogens.


2021 ◽  
Vol 9 (1) ◽  
pp. 79-84
Author(s):  
Enish Pathak ◽  
Arjun Sanjyal ◽  
Chhatra Raj Regmi ◽  
Saroj Paudel ◽  
Anima Shrestha

The deleterious effects of intensive use of chemical fertilizers and pesticides in agriculture has led to the substantial research efforts on finding the alternatives to these agrochemicals. This study was aimed to isolate Bacillus species from soil of different regions of Nepal and screen for their ability to promote plant growth directly or indirectly by testing their ability to produce plant growth hormone indole acetic acid, hydrogen cyanide, ammonia and protease as well as phosphate solubilization. Thirty nine Bacillus strains were isolated from 25 soil samples of different regions of Kathmandu and Chitwan districts of Nepal. These isolates were tested for plant growth promoting traits in vitro. Among the total isolates, about 48.7% were indole acetic acid producers, 38.4% of the isolates showed the ability to solubilize the phosphate, 71.8% were able to produce ammonia and all the isolates had the ability to produce hydrogen cyanide and protease. The isolated strains showed positive results to maximum PGPR traits and exhibited a potential to be used as alternatives to chemical fertilizers and pesticides and could be used as low-cost bio-based technology to promote plant growth in the agricultural sector.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Anam Yousaf ◽  
Hassan Ahmed Khan ◽  
Tayyaba Younas

Plant are benefitted in different aspects by symbiotic bacteria. Environmental conditions, Plantconditions and type of pathogens determine these important services for plants Objective: Theresearch was conducted to assess the plant growth enhancing effects of wheat and cabbagerhizobacteria on the growth of wheat plant Methods: For this purpose, total 49 bacteria were isolatedand characterized from the rhizosphere of wheat and cabbage plants. The isolates were assessed forplant growth promoting properties such as: indole acetic acid production, phosphate solubilization,antibacterial activity and heavy metal resistance. Indole acetic acid was found to be produced by 7isolates and phosphate solubilization was shown by 20 isolates. Antibacterial activity was determinedagainst four clinical isolates like Staphylococcus aureus, Klebsiella sp., Escherichia coli and Pseudomonasaeruginosa Results: Antibacterial activity against Staphylococcus aureus was shown by 38 isolates, 12isolates showed antibacterial activity against Escherichia coli and Klebsiella sp., whereas no isolate wasfound to be positive against Pseudomonas aeruginosa. Another plant growth enhancing trait (heavymetal resistance) was shown by 28 rhizobacteria. In order to evaluate the capability of isolates toenhance the plant growth, bio-inoculation assay was performed using wheat seeds Conclusions:Rhizobacterial inoculation increased the number of roots, shoots, leaves and roots and shoot length ofwheat plantlets as compared to un-inoculated control.


Sign in / Sign up

Export Citation Format

Share Document