Two Arabidopsis thaliana dihydrodipicolinate synthases, DHDPS1 and DHDPS2, are unequally redundant

2012 ◽  
Vol 39 (12) ◽  
pp. 1058 ◽  
Author(s):  
Susan Jones-Held ◽  
Luciana Pimenta Ambrozevicius ◽  
Michael Campbell ◽  
Bradley Drumheller ◽  
Emily Harrington ◽  
...  

In Arabidopsis thalinana (L.) Heynh., DHDPS1 and DHDPS2 encode orthologous dihydrodipicolinate synthases (DHDPS), the first enzyme of the lysine (Lys) biosynthesis pathway. A TDNA insertion mutant of dhdps2 was previously reported to be viable and to accumulate free threonine (Thr). Analysis of additional TDNA insertion lines showed that dhdps1 and dhdps2 mutants are both viable and that whereas dhdps2 mutants accumulate Thr, dhdps1 plants do not. Thr-accumulation was complemented by heterologous expression of Escherichia coli DapA, indicating that the phenotype is due to reduced DHDPS activity in dhdps2. DHDPS1 contributes ~30% towards the total DHDPS activity in leaves of young plants and DHDPS2 contributes 70%; therefore, the threshold of activity resulting in Thr accumulation lies within this narrow range. dhdps1–dhdps2 double mutants could not be isolated, even after exogenous feeding with Lys. Segregation analysis indicated that gametes lacking functional DHDPS genes are defective, as are embryos. Plants carrying only a single DHDPS2 gene do not accumulate Thr, but they show a gametophytic defect that is partially rescued by Lys application. Despite the accumulation of Thr, dhdps2 seedlings are no more sensitive than wild-type plants to growth inhibition by Lys or the Lys precursor diaminopimelate. They also are not rescued by methionine at growth-inhibitory Lys concentrations. Exogenous application of Lys and methionine to dhdps2 mutants did not reduce the accumulation of Thr.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1637
Author(s):  
Solida Long ◽  
Joana B. Loureiro ◽  
Carla Carvalho ◽  
Luís Gales ◽  
Lucília Saraiva ◽  
...  

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1–3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1–3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.


Genetics ◽  
1989 ◽  
Vol 121 (3) ◽  
pp. 401-409
Author(s):  
P Guzmán ◽  
G Guarneros

Abstract The rap mutation of Escherichia coli prevents the growth of bacteriophage lambda. We have isolated phage mutants that compensate for the host deficiency. The mutations, named bar, were genetically located to three different loci of the lambda genome: barI in the attP site, barII in the cIII ea10 region, and barIII within or very near the imm434 region. The level of lambda leftward transcription correlates with rap exclusion. Phage lambda mutants partially defective in the pL promoter or in pL-transcript antitermination showed a Bar- phenotype. Conversely, mutants constitutive for transcription from the pI or pL promoters were excluded more stringently by rap bacteria. We conclude that rap exclusion depends on the magnitude of transcription through the wild type bar loci in the phage genome.


1999 ◽  
Vol 181 (14) ◽  
pp. 4318-4325 ◽  
Author(s):  
Masaru Ohara ◽  
Henry C. Wu ◽  
Krishnan Sankaran ◽  
Paul D. Rick

ABSTRACT We report here the identification of a new lipoprotein, NlpI, inEscherichia coli K-12. The NlpI structural gene (nlpI) is located between the genes pnp(polynucleotide phosphorylase) and deaD (RNA helicase) at 71 min on the E. coli chromosome. The nlpI gene encodes a putative polypeptide of approximately 34 kDa, and multiple lines of evidence clearly demonstrate that NlpI is indeed a lipoprotein. An nlpI::cm mutation rendered growth of the cells osmotically sensitive, and incubation of the insertion mutant at an elevated temperature resulted in the formation of filaments. The altered phenotype of the mutant was a direct consequence of the mutation in nlpI, since it was complemented by the wild-type nlpI gene alone. Overexpression of the unaltered nlpI gene in wild-type cells resulted in the loss of the rod morphology and the formation of single prolate ellipsoids and pairs of prolate ellipsoids joined by partial constrictions. NlpI may be important for an as-yet-undefined step in the overall process of cell division.


1994 ◽  
Vol 5 (3) ◽  
pp. 283-296 ◽  
Author(s):  
M Florio ◽  
L K Wilson ◽  
J B Trager ◽  
J Thorner ◽  
G S Martin

Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.


1996 ◽  
Vol 40 (6) ◽  
pp. 1426-1431 ◽  
Author(s):  
R Frothingham ◽  
W A Meeker-O'Connell ◽  
E A Talbot ◽  
J W George ◽  
K N Kreuzer

Pyrazinamide (PZA) is one of the three most important drugs for treatment of Mycobacterium tuberculosis infections. The antibacterial activity of PZA requires a bacterial enzyme, pyrazinamidase (PZAase), which hydrolyzes PZA to form pyrazinoic acid and ammonia. Most PZA-resistant clinical M. tuberculosis isolates lack PZAase activity. With the goal of eventually identifying and characterizing the M.tuberculosis PZAase gene, we began with the more tractable organism, Escherichia coli, which also has PZAase activity. We screened a transposon-generated E. coli insertion mutant library, using a qualitative PZAase assay. Two PZAase-negative mutants out of 4,000 colonies screened were identified. In each mutant, the transposon interrupted the same 639-bp open reading frame (ORF), ORF1. The expression of ORF1 on a multicopy plasmid complemented a PZAase-negative mutant, leading to PZAase activity levels approximately 10-fold greater than those of the wild type. PZA has a structure similar to that of nicotinamide, a pyridine nucleotide cycle intermediate, so we tested our strains for nicotinamidase activity (EC 3.5.1.19) (genetic locus pncA). The construct with multiple plasmid copies of ORF1 had an approximately 10-fold increase in levels of nicotinamidase activity. This overexpressing strain could utilize nicotinamide as a sole nitrogen source, through wild-type E. coli cannot. We conclude that a single E. coli enzyme accounts for both PZAase and nicotinamidase activities and that ORF1 is the E.coli PZAase and nicotinamidase gene, pncA.


2005 ◽  
Vol 391 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Acharya B. Vishu Kumar ◽  
Mandyam C. Varadaraj ◽  
Lalitha R. Gowda ◽  
Rudrapatnam N. Tharanathan

Papain (from papaya latex; EC 3.4.22.2) and Pronase (from Streptomyces griseus; EC 3.4.24.31) caused optimum depolymerization of chitosan at pH 3.5 and 37 °C, resulting in LMMC (low molecular mass chitosan) and chito-oligomeric–monomeric mixture. The yield of the latter was 14–16% and 14–19% respectively for papain- and Pronase-catalysed reactions, depending on the reaction time (1–5 h). HPLC revealed the presence of monomer(s) and oligomers of DP (degree of polymerization) 2–6, which was also confirmed by matrix-assisted laser-desorption ionization–time-of-flight MS. Along with the chito-oligomers, the appearance of only GlcNAc (N-acetylglucosamine) in Pronase-catalysed chitosanolysis was indicative of its different action pattern compared with papain. Fourier-transform infrared, liquid-state 13C-NMR spectra and CD analyses of chito-oligomeric–monomeric mixture indicated the release of GlcNAc/GlcNAc-rich oligomers. The monomeric sequence at the non-reducing ends of chito-oligomers was elucidated using N-acetylglucosaminidase. The chito-oligomeric–monomeric mixture showed better growth inhibitory activity towards Bacillus cereus and Escherichia coli compared with native chitosan. Optimum growth inhibition was observed with chito-oligomers of higher DP having low degree of acetylation. The latter caused pore formation and permeabilization of the cell wall of B. cereus, whereas blockage of nutrient flow due to the aggregation of chito-oligomers–monomers was responsible for the growth inhibition and lysis of E. coli, which were evidenced by scanning electron microscopy analysis. The spillage of cytoplasmic enzymes and native PAGE of the cell-free supernatant of B. cereus treated with chito-oligomeric–monomeric mixture further confirmed bactericidal activity of the latter. Use of papain and Pronase, which are inexpensive and easily available, for chitosanolysis, is of commercial importance, as the products released are of considerable biomedical value.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


Sign in / Sign up

Export Citation Format

Share Document