scholarly journals Transcriptomic Analysis of a Susceptible African Maize Line to Fusarium verticillioides Infection

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1112
Author(s):  
Humaira Lambarey ◽  
Naadirah Moola ◽  
Amy Veenstra ◽  
Shane Murray ◽  
Mohamed Suhail Rafudeen

Maize (Zea mays L.) is a staple crop providing food security to millions of people in sub Saharan Africa. Fusarium verticillioides, an important fungal pathogen, infects maize causing ‘Fusarium Ear Rot’ disease, which decreases maize kernel yield and the quality of the crop harvested. Currently, no African maize line is completely resistant to infection by F. verticillioides. This study investigated an African maize line, Zea mays CML144, infected with F. verticillioides. Analysis of morphological characteristics showed significant differences between mock-infected and infected plants. RNA-sequencing (RNA-seq) was conducted on plants 14 days post-inoculation to identify differentially expressed genes (DEGs) involved in F. verticillioides infection. Analysis of RNA-seq data revealed DEGs that were both significantly up- and down-regulated in the infected samples compared to the mock-infected control. The maize TPS1 and cytochrome P450 genes were up-regulated, suggesting that kauralexins were involved in the CML144 defense response. This was substantiated by kauralexin analyses, which showed that kauralexins, belonging to class A and B, accumulated in infected maize tissue. Gene ontology terms relating to response to stimulus, chemical stimulus and carbohydrate metabolic processes were enriched, and the genes belonging to these GO-terms were down-regulated. Quantitative real-time PCR was performed on selected DEGs and measurement of phytoalexin accumulation validated the RNA-seq data and GO-analysis results. A comparison of DEGs from this study to DEGs found in F. verticillioides (ITEM 1744) infected susceptible (CO354) and resistant (CO441) maize genotypes in a previous study, matched 18 DEGs with 17 up-regulated and one down-regulated, respectively. This is the first transcriptomic study on the African maize line, CML144, in response to F. verticillioides infection.

2021 ◽  
Author(s):  
Abdoul‐Madjidou Yacoubou ◽  
Nouhoun Zoumarou Wallis ◽  
Abebe Menkir ◽  
Valerien A. Zinsou ◽  
Alexis Onzo ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 485
Author(s):  
Nnanna N. Unachukwu ◽  
Abebe Menkir ◽  
Adekemi Stanley ◽  
Ebenezer O. Farombi ◽  
Melaku Gedil

Strigahermonthica (Del.) Benth is a parasitic weed that devastates cereals in Sub-Saharan Africa. Several control measures have been proposed for the parasite, of these, host plant resistance is considered the most cost-effective for poor farmers. Some tolerant/resistant lines have been developed and these lines display tolerance/resistance mechanisms to the parasite. A series of studies was done to investigate some of the mechanisms through which a resistant (TZISTR1108) and a susceptible (5057) maize line responds to S. hermonthica infestation, as well as the effects of parasitism on these lines. In this study, TZISTR1108 stimulated the germination and attachment of fewer S. hermonthica plants than 5057, both in the laboratory and on the field. In TZISTR1108, the growth of the S. hermonthica plants, that successfully attached, was slowed. When compared to the un-infested plants, the infested resistant plants showed fewer effects of parasitism than the infested susceptible plants. The infested TZISTR1108 plants were more vigorous, taller and resembled their un-infected counterparts. There were substantial reductions in the stomatal conductance and nitrogen content of the 5057 upon infestation. The resistant inbred line showed multiple mechanisms of resistance to S. hermonthica infestation. It thrives better than the susceptible line by reducing the attachment of S. hermonthica and it delays the parasite’s development.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yanyong Cao ◽  
Jie Zhang ◽  
Shengbo Han ◽  
Laikun Xia ◽  
Juan Ma ◽  
...  

During 2017 to 2019, a field survey for maize stalk rot was conducted in 21 counties (districts) across the Guangxi province of China. This disease caused yield losses ranging from 20% to 30%. Maize plants with stalk rot were collected during the late milk stage and pieces of diseased pith tissue were cultured as previously described (Shan et al. 2017). Fungal colonies and mycelia with morphological characteristics of Fusarium species were subcultured onto fresh potato dextrose agar (PDA) and carnation leaf agar (CLA) plates. Based on morphological characteristics and molecular detection by amplification of Fusarium genus-specific primers (Duan et al. 2016), 39 Fusarium isolates were identified. Among them, five isolates from Du’an, Pingguo, Debao, and Daxin had abundant, pale orange to yellow aerial mycelium with deep red pigments when grown on PDA (Fig. 1A; 1B). The average growth rate was 8.0 to 12.0 mm per day at 25°C in the dark. The fungi produced two types of spores on CLA. Microconidia were ovoid to clavate, generally 0- to 3-septate, and 4.6 to 9.4 μm in length (n = 30) (Fig. 1D); Macroconidia were slightly curved with an acute apical cell, mostly 3- to 4- septate, and 19.4 to 38.2 μm in length (n = 30) (Fig. 1C). No chlamydospores were observed. These five isolates were initially identified as Fusarium kyushuense based on morphological features. PCR was performed to amplify three phylogenetic genes (TEF1-α, RPB1, and RPB2) (O'Donnell et al. 1998) and species specific primers kyuR1F/kyuR1R (5-TTTTCCTCACCAAGGAGCAGATCATG-3/5-TCCAATGGACTGGGCAGCCAAAACACC-3), kyuR2F/kyuR2R (5-CAGATATACATTTGCCTCGACAC-3/5-TACTTGAGCACGGAGCTTG-3) were used to confirm species identity. The obtained sequences were deposited in GenBank under the accession numbers MT997084, MT997080, MT997081 (TEF1-α); MT550012, MT997085, MT997086 (RPB1); MT550009, MT997089, and MT997090 (RPB2), respectively. Using BLAST, sequences of TEF1-α, RPB1, and RPB2 of the isolates were 99.33% (MH582297.1) to 100% (MG282364.1) similar to those of F. kyushuense strains (Supplementary Table 1). Based on phylogenetic analysis with maximum likelihood methods using tools of the website of CIPRES (http://www.phylo.org), isolates GX27, GX167, and GX204 clustered with F. kyushuense with 100% bootstrap support (Fig. 2). The pathogenicity of the three isolates was tested using young seedlings and adult plants as previously described with modification (Ye et al. 2013; Zhang et al. 2016). The primary roots of three-leaf-old seedlings were inoculated by immersing the roots into a 1 × 106 macroconidia solution, incubating for 6 h at 25°C, and transferring to normal growth conditions (26°C, 16 h light/22°C, 8 h dark). The second or third internode above the soil surface of flowering stage plants grown in a greenhouse was bored with a Bosch electric drill to make a hole (ca. 8 mm in diameter) and inoculated with 0.5 mL of mycelia plug then sealed with petrolatum. The inoculum was created by homogenizing five plates of flourish hyphal mats (approximately 125 mL) with kitchen blender and adjusting to a final volume of 200 mL with sterilized ddH2O. No symptoms were observed in the seedlings or adult plants that were mock-inoculated with PDA plugs. Three days post-inoculation (dpi), roots of the infected seedling turned dark-brown and shrunk and the leaves wilted (Fig. 1E). Typical stalk rot symptoms observed in the inoculated plants were premature wilting of entire plant and hollow and weak stalks, leading to lodging; the longitudinal section of the internodes exhibited obvious dark brown necrosis and reddish discoloration at 14 dpi and 30 dpi, respectively (Fig. 1F). Fusarium kyushuense was re-isolated from the inoculated stalk lesions but not from the control. This is the first record of stalk rot caused by F. kyushuense on maize plants in China. However, F. kyushuense is known to cause maize ear rot in China (Wang et al. 2014) and can produce type A and type B trichothecene mycotoxins in kernels (Aoki and O'Donnell 1998). The occurrence of maize stalk rot and ear rot caused by F. kyushuense should be monitored in China due to the potential risk for crop loss and mycotoxin contamination.


2020 ◽  
Vol 28 (2) ◽  
pp. 195-202
Author(s):  
E.K. Aklaku ◽  
E.N.K. Sowley ◽  
M. Ofosu

Maize (Zea mays L.) is an important staple food crop and a source of income to farmers, as well as foreign exchange earner in most countries in sub-Saharan Africa. Its production is hampered by fungal diseases, which also cause contamination with mycotoxins, especially aflatoxin and its associated health hazards. This study sought to isolate and identify aflatoxigenic fungi, as well as detect the presence of Aflatoxin B1 (AfB1) in maize samples obtained from farmers in the Tolon-Kumbungu district in the northern region of Ghana. Twenty farming communities were randomly selected for the study in consultation with the district office of the Ministry of Food and Agriculture (MoFA). Samples were collected from 200 randomly selected maize farmers by the composite sampling technique, for isolation of aflatoxigenic fungi by the agar plate method and the detection of aflatoxin. Aflatoxin was detected in maize samples with the Black light, rapid screening and immunoassay methods. Aspergillus flavus had the highest percentage of occurrence (63.7%); followed by A. niger (16.5%), Rhizopus stolonifer (9.3%), Penicillium spp. (6.9%) and Fusarium oxysporum (3.7%). Farm samples had more aflatoxin than those from stores and markets. Samples of maize from farms in Gbirimani community had the highest aflatoxin contamination of +60 ppb. Concentrations of Afb1 at or above +20 ppb were recorded in all the communities, except in Tinguli. Apart from Voggu, all market samples were free from aflatoxin contamination. Key words: Aflatoxigenic fungi, postharvest, Zea mays


2009 ◽  
Vol 89 (1) ◽  
pp. 103-106 ◽  
Author(s):  
L. Tamburic-Ilincic ◽  
A. W. Schaafsma

Gibberella zeae, Fusarium verticillioides and F. subglutinans are the most important causes of Fusarium stalk rot in corn (Zea mays L.). Gibberella zeae also causes fusarium head blight in wheat (Triticum aestivum L.) and gibberella ear rot in corn. The objectives of this study were to investigate prevalence of Fusarium species in the stalks of seed corn over time and to investigate the influence of sampling time and internode position on Fusarium spp. and G. zeae, particularly. Fusarium subglutinans and G. zeae were the most frequently recovered species from asymptomatic host tissue and from pink discoloration on stalks, respectively. More G. zeae was isolated from the basal internode of stalks than from the higher ones closer to harvest time. Other species isolated from seed corn stalks over time included F. verticillioides, F. oxysporum, F. sporotrichioides and F. equiseti. A similar spectrum of Fusarium species was identified from corn ears and from winter wheat across southwestern Ontario. Key words: Zea mays L., Fusarium spp.


2020 ◽  
Vol 13 (2) ◽  
pp. 213-224 ◽  
Author(s):  
P.W. Qin ◽  
J. Xu ◽  
Y. Jiang ◽  
L. Hu ◽  
T. van der Lee ◽  
...  

Maize is currently the most important crop in China. A major concern in maize production is maize ear rot caused by Fusarium spp., which results in yield losses, reduction of seed quality and the accumulation of mycotoxins in the harvested grains. To identify the importance of the different Fusarium species in maize infection, we performed a comprehensive survey on 9,000 asymptomatic and randomly collected maize kernels. Seeds were collected from 12 different provinces covering all major maize growing areas in China and included five maize varieties. In total 1,022 Fusarium isolates were retrieved that were identified based on morphological characteristics, by species specific diagnostic PCRs and by EF1-α gene sequencing. Eight different species were identified: Fusarium verticillioides (75.34%), Fusarium graminearum (8.32%), Fusarium proliferatum (7.14%), Fusarium subglutinans (4.11%), Fusarium meridionale (1.57%), Fusarium oxysporum (1.37%), Fusarium semitectum (1.17%), and Fusarium asiaticum (0.98%). The distribution of Fusarium species was found to be different in different regions with the largest diversity observed in Hubei province, where all eight Fusarium species were isolated. Genetic chemotyping within the F. graminearum species complex indicated that all of the 85 F. graminearum isolates showed the 15-acetyldeoxynivalenol chemotype, whereas all F. asiaticum (n=10) and F. meridionale (n=16) isolates had the nivalenol chemotype even when isolated from the same maize field. To our knowledge this is the largest collection of Fusarium isolates from maize and further exploitations of this collection are discussed.


2021 ◽  
Vol 9 (2) ◽  
pp. 383
Author(s):  
Godfrey Wokorach ◽  
Sofie Landschoot ◽  
Kris Audenaert ◽  
Richard Echodu ◽  
Geert Haesaert

Worldwide fungal contamination leads to both quantitative and qualitative grain losses during crop growth and/or storage. A greater proportion of grains contamination with toxins often occurs in sub-Saharan Africa, where control measures are limited. We determined fungal diversity and their toxin production ability in household grains meant for human consumption to highlight the risk of mycotoxin exposure among people from northern Uganda. The study underlines the high diversity of fungi that group into 15 genera; many of which are plant pathogens with toxigenic potential. Fusarium verticillioides was the most common fungal species isolated from household grains. The study also indicates that northern Uganda is favored by a high proportion of toxigenic isolates of F. verticillioides, F. andiyazi, and F. proliferatum, which are characterized by a high fumonisins production capability. The fumonisins production ability was not dependent on the species, grain types, and haplotype group to which the isolates belong. The contamination of most household grains with fungi capable of producing a high amount of toxin shows that most people are exposed to an elevated amount of mycotoxins, which shows the frequent problems with mycotoxins that have been reported in most parts of sub-Saharan Africa.


2020 ◽  
Vol 13 (7) ◽  
pp. 2978-2990
Author(s):  
Atalaèsso Bokobana ◽  
Outendé Toundou ◽  
Komi Odah ◽  
Koffi S.S. Dossou ◽  
Koffi Tozo

In sub-Saharan Africa, soil degradation and recurrent droughts are major obstacles to a sustainable agriculture. This study aimed at investigating the effect of compost addition to soil on proline content and activities of the antioxidant enzymes [catalase (CAT), ascorbate peroxidase (APX)] in maize plants, under drought stress conditions. The test was carried out in 20L plastic pots containing either sandy soil or sandy soil with the fertilizer, under natural conditions. The water deficit was induced at male blooming and milky grain stages. Plant irrigation was done by successive weighing of the pots during which the control is reduced to the same weight corresponding to 70% of the useful water reserve (UWR), while the stressed treatment maintains the water content at 30% of the UWR for 10 days. At the end of the stress period, the proline content, the CAT and APX activities in the leaves were determined through a spectrophotometry. The results show an important accumulation of proline and increase in enzymatic activity induced by water deficit in plants grown on compost (p = 0.00000 at p < 0.05). This study provides evidence for a beneficial effect of compost application in enhancing drought tolerance of maize.Keywords: Drought stress; compost; proline; antioxidant enzymes; Zea mays L.


2018 ◽  
Vol 15 ◽  
pp. 30-37 ◽  
Author(s):  
Olumayowa Mary Olowe ◽  
Odunayo Joseph Olawuyi ◽  
Ayodele Adegboyega Sobowale ◽  
Adegboyega Christopher Odebode

Sign in / Sign up

Export Citation Format

Share Document