scholarly journals Glucosinolate Profile and Glucosinolate Biosynthesis and Breakdown Gene Expression Manifested by Black Rot Disease Infection in Cabbage

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1121
Author(s):  
Mehede Hassan Rubel ◽  
Md. Abuyusuf ◽  
Ujjal Kumar Nath ◽  
Arif Hasan Khan Robin ◽  
Hee Jeong Jung ◽  
...  

Cabbage (Brassica oleracea var. capitata) is an economically important crop in the family Brassicaceae. Black rot disease is a top ranked cabbage disease, which is caused by Xanthomonas campestris pv. campestris (Xcc) and may reduce 50% crop loss. Therefore, we need a clear understanding of black rot disease resistance for sustainable disease management. The secondary metabolites, like Glucosinolate (GSL) presents in Brassica species, which plays a potential role in the defense mechanism against pathogens. However, there is little known about GSL-regulated resistance mechanisms and GSL biosynthesis and the breakdown related gene expression after black rot disease infection in cabbage. In this study, relative expression of 43 biosynthetic and breakdown related GSLs were estimated in the black rot resistant and susceptible cabbage lines after Xcc inoculation. Ten different types of GSL from both aliphatic and indolic groups were identified in the contrasting cabbage lines by HPLC analysis, which included six aliphatic and four indolic compounds. In the resistant line, nine genes (MYB122-Bol026204, MYB34-Bol017062, AOP2-Bo9g006240, ST5c-Bol030757, CYP81F1-Bol017376, CYP81F2-Bol012237, CYP81F4-Bol032712, CYP81F4-Bol032714 and PEN2-Bol030092) showed consistent expression patterns. Pearson’s correlation coefficient showed positive and significant association between aliphatic GSL compounds and expression values of ST5c-Bol030757 and AOP2-Bo9g006240 genes as well as between indolic GSL compounds and the expression of MYB34-Bol017062, MYB122-Bol026204, CYP81F2-Bol012237, CYP81F4-Bol032712 and CYP81F4-Bol032714 genes. This study helps in understanding the role of GSL biosynthesis and breakdown related genes for resistance against black rot pathogen in cabbage, which could be further confirmed through functional characterization either by overexpression or knock-out mutation.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1400
Author(s):  
Xiao-Guang Sheng ◽  
Ferdinando Branca ◽  
Zhen-Qing Zhao ◽  
Jian-Sheng Wang ◽  
Hui-Fang Yu ◽  
...  

Black rot is a destructive disease that affects B. oleracea crops, causing significant losses to growers throughout the world. The purpose of this study was to screen out new sources resistant to Xanthomonas campestris pv. campestris race 4 (Xcc4) in 26 cauliflower and six related wild species, and to assess the inheritance of resistance. The results indicate that most of the tested accessions were susceptible or had intermediate resistance, except the Boc4601 (a cauliflower stable inbred line) and PI435896, UNICT5168, and UNICT5169 (wild accessions). Among them, UNICT5169 (Brassica montana) and PI435896 (Brassica balearica) showed the strongest resistance to Xcc4, with significantly lower disease index (DI), area of the infected part (AIP) and proportion of the infected part to the total leaf area (PTL) values. UNICT 5169 was selected as an Xcc4-resistant parent because of its relatively good cross seed-setting rate with cauliflower cultivars. F1 hybrids were successfully produced between this wild resistant accession (UNICT 5169) and one susceptible cauliflower breeding line (Boc3202-4), indicating the potential transferability of this resistance to cauliflower. The results of the symptoms severity evaluation of the F2 population indicate that Xcc4 resistance in UNICT5169 is a quantitative trait, which guides future resistance gene location and black rot resistance breeding.


2000 ◽  
Vol 78 (9) ◽  
pp. 1144-1149 ◽  
Author(s):  
P A Gay ◽  
S Tuzun

The physiological mechanisms associated with resistance of cabbage to black rot disease seem to be associated with the hydathodes. To investigate the role of hydathodes in disease resistance, total peroxidase activities, anionic peroxidase isozyme expression, and lignin deposition were determined in hydathodes of resistant (Hancock and Green Cup), partially resistant (Cheers), and susceptible (Strukton and Perfect Ball) cabbage varieties (Brassica oleracea L.) during pathogenesis with Xanthomonas campestris pv. campestris. Four-week-old plants were petiole-inoculated with a highly virulent strain of X. campestris pv. campestris (FD91L). Hydathodal fluids were collected daily over a 14-day period from infected plants as well as noninfected, mock-inoculated control plants. Hydathodal fluids of resistant varieties had greater peroxidase activity when compared to susceptible ones, with infected plants having higher peroxidase levels than noninfected plants. Isoelectric focusing revealed the presence of four anionic peroxidase isozymes in hydathodal fluids, with the most anionic one (pI of 3.6) accumulating only upon infection. Lignin deposition in and around the hydathodes was associated with the accumulation of this particular isozyme in hydathodal fluids. The evidence suggests that a rapid, systemic response is associated with resistance to the bacterial pathogen.Key words: peroxidases, hydathodes, isozymes, black rot disease, cabbage, Xanthomonas campestris pv. campestris.


Author(s):  
Frederic B. Bastian ◽  
Julien Roux ◽  
Anne Niknejad ◽  
Aurélie Comte ◽  
Sara S. Fonseca Costa ◽  
...  

ABSTRACTBgee is a database to retrieve and compare gene expression patterns in multiple animal species, produced by integrating multiple data types (RNA-Seq, Affymetrix, in situ hybridization, and EST data). It is based exclusively on curated healthy wild-type expression data (e.g., no gene knock-out, no treatment, no disease), to provide a comparable reference of normal gene expression. Curation includes very large datasets such as GTEx (re-annotation of samples as “healthy” or not) as well as many small ones. Data are integrated and made comparable between species thanks to consistent data annotation and processing, and to calls of presence/absence of expression, along with expression scores. As a result, Bgee is capable of detecting the conditions of expression of any single gene, accommodating any data type and species. Bgee provides several tools for analyses, allowing, e.g., automated comparisons of gene expression patterns within and between species, retrieval of the prefered conditions of expression of any gene, or enrichment analyses of conditions with expression of sets of genes. Bgee release 14.1 includes 29 animal species, and is available at https://bgee.org/ and through its Bioconductor R package BgeeDB.


2009 ◽  
Vol 57 (2) ◽  
pp. 127-136
Author(s):  
E. Szabó ◽  
G. Bárdos ◽  
I. Nagy

In order to target factors involved in plant-pathogen interactions, gene expression differences were investigated on pepper ( Capsicum annuum L.) plants after artificial infection with the bacterial pathogen Xanthomonas campestris pv. vesicatoria . Amplified Fragment Length Polymorphism investigations on reverse transcribed DNA fragments (cDNA-AFLP) were used to compare the expression profiles of parental lines and of resistant and susceptible individuals from pepper populations segregating for the gds gene, which confers a general defence system in pepper. In total, 73 transcript-derived fragments (TDFs) displaying differential expression patterns could be identified (presence-absence and/or different time courses in resistant and susceptible genotypes). Of these, 67 fragments were cloned and sequenced. In the case of several TDFs, sequence comparisons revealed close homologies to genes known to be responsible for abiotic stress or biotic elicitors, presenting potentially interesting targets for more detailed studies on gene expression and signal transduction.


2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Le Zhou ◽  
Cheng Wang ◽  
Guo-Hua Wang ◽  
Zai-Wa Wei ◽  
Qiu-Xia Fu ◽  
...  

ABSTRACT Xanthomonas campestris pv. campestris is the causative agent of black rot disease in crucifer plants. This Gram-negative bacterium utilizes the type III secretion system (T3SS), encoded by the hrp gene cluster, to aid in its resistance to host defenses and the ability to cause disease. The T3SS injects a set of proteins known as effectors into host cells that come into contact with the bacterium. The T3SS is essential for the virulence and hypersensitive response (HR) of X. campestris pv. campestris, making it a potential target for disease control strategies. Using a unique and straightforward high-throughput screening method, we examined a large collection of diverse small molecules for their potential to modulate the T3SS without affecting the growth of X. campestris pv. campestris. Screening of 13,129 different compounds identified 10 small molecules that had a significant inhibitory influence on T3SS. Moreover, reverse transcription-quantitative PCR (qRT-PCR) assays demonstrated that all 10 compounds repress the expression of the hrp genes. Interestingly, the effect of these small molecules on hrp genes may be through the HpaS and ColS sensor kinase proteins that are key to the regulation of the T3SS in planta. Five of the compounds were also capable of inhibiting X. campestris pv. campestris virulence in a Chinese radish leaf-clipping assay. Furthermore, seven of the small molecules significantly weakened the HR in nonhost pepper plants challenged with X. campestris pv. campestris. Taken together, these small molecules may provide potential tool compounds for the further development of antivirulence agents that could be used in disease control of the plant pathogen X. campestris pv. campestris. IMPORTANCE The bacterium Xanthomonas campestris pv. campestris is known to cause black rot disease in many socioeconomically important vegetable crops worldwide. The management and control of black rot disease have been tackled with chemical and host resistance methods with variable success. This has motivated the development of alternative methods for preventing this disease. Here, we identify a set of novel small molecules capable of inhibiting X. campestris pv. campestris virulence, which may represent leading compounds for the further development of antivirulence agents that could be used in the control of black rot disease.


Sign in / Sign up

Export Citation Format

Share Document