scholarly journals Increasing Growth of Lettuce and Mizuna under Sole-Source LED Lighting Using Longer Photoperiods with the Same Daily Light Integral

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1659
Author(s):  
Shane Palmer ◽  
Marc W. van Iersel

Light recommendations for horticultural crops often focus on the optimal daily light integral (DLI) without regard to how that light is delivered throughout each day. Because photosynthesis is more efficient at lower photosynthetic photon flux density (PPFD), we hypothesized that longer photoperiods with lower PPFD results in faster growth than shorter photoperiods with higher PPFD and the same DLI. We quantified the effect of different photoperiods, all providing the same DLI, on photosynthesis and growth of two leafy greens. Mizuna (Brassica rapa var. japonica) and lettuce (Lactuca sativa) “Little Gem” were grown from seed in a controlled environment chamber (20 °C and 819 µmol·mol−1 CO2) under six photoperiods (10, 12, 14, 16, 18, and 20 h). LED fixtures provided white light and PPFD was adjusted so each treatment received a DLI of 16 mol·m−2·d−1. Mizuna and lettuce were harvested 30 and 41 days after planting, respectively. Longer photoperiods with lower PPFD increased light interception, chlorophyll content index, quantum yield of photosystem II, and aboveground biomass, but decreased instantaneous CO2 assimilation of lettuce and mizuna. Aboveground biomass increased 16.0% in lettuce and 18.7% in mizuna in response to increasing the photoperiod from 10 to 20 h. In summary, extending the photoperiod and lowering PPFD increases growth of lettuce and mizuna by increasing light interception and the quantum yield of photosystem II.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1172 ◽  
Author(s):  
Claudia Elkins ◽  
Marc W. van Iersel

Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric lighting is wasteful if not provided in a way that promotes efficient photochemistry. The quantum yield of photosystem II (ΦPSII), the fraction of absorbed light used for photochemistry, decreases with increasing photosynthetic photon flux density (PPFD). Thus, we hypothesized that the daily photochemical integral (DPI), the total electron transport through photosystem II (PSII) integrated over 24 h, would increase if the same DLI was provided at a lower PPFD over a longer photoperiod. To test this, ΦPSII and the electron transport rate (ETR) of lettuce (Lactuca sativa ‘Green Towers’) were measured in a growth chamber at DLIs of 15 and 20 mol m−2 d−1 over photoperiods ranging from 7 to 22 h. This resulted in PPFDs of 189 to 794 μmol m−2 s−1. The ΦPSII decreased from 0.67 to 0.28 and ETR increased from 55 to 99 μmol m−2 s−1 as PPFD increased from 189 to 794 μmol m−2 s−1. The DPI increased linearly as the photoperiod increased, but the magnitude of this response depended on DLI. With a 7-h photoperiod, the DPI was ≈2.7 mol m−2 d−1, regardless of DLI. However, with a 22-h photoperiod, the DPI was 4.54 mol m−2 d−1 with a DLI of 15 mol m−2 d−1 and 5.78 mol m−2 d−1 with a DLI of 20 mol m−2 d−1. Our hypothesis that DPI can be increased by providing the same DLI over longer photoperiods was confirmed.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1042 ◽  
Author(s):  
Maria Luce Bartucca ◽  
Daniele Del Buono ◽  
Eleonora Ballerini ◽  
Paolo Benincasa ◽  
Beatrice Falcinelli ◽  
...  

The use of Light Emitting Diode (LED) lights in microscale vegetable production is more and more widespread. In this context, the effect of light spectrum on photosynthesis, growth, shoot yield, pigment content, and nutritional status of einkorn seedlings (Triticum monococcum L. ssp. monococcum), germinated and grown in a nutrient solution, was investigated. Plants were subjected to six different LED light treatments, all having a photon flux density (PFD) of 200 μmol m−2 s−1. Two light treatments were monochromatic (red or blue), three dichromatic (blue and red in the proportion), and one of a wider spectrum (selected as a control). All the light treatments affected the morphological, biochemical, and nutritional status of einkorn seedlings. Overall, the dichromatic treatments were the most effective in stimulating biomass production, CO2 assimilation, and evapotranspiration, as well as contents in chlorophyll a and b and carotenoids, and additionally nitrogen, phosphorous, manganese, iron, and zinc. These results are of relevance for the beneficial effects of dichromatic LED treatments in maximizing einkorn shoot yield and nutritional values, and in limiting energy consumption in indoor cultivation.


1991 ◽  
Vol 18 (4) ◽  
pp. 369 ◽  
Author(s):  
JP Krall ◽  
GE Edwards ◽  
MSB Ku

The quantum yields of electron transport from photosystem II (PSII) (Φe, determined from chlorophyll a fluorescence), and CO2 assimilation (ΦCO2, photosynthetic rate/light intensity) were measured simultaneously in vivo with representative species of Flaveria which show a progression in development between C3 and C4 photosynthesis and in reduction of photorespiration. These were F. pringlei (C3), F. sonorensis (C3-C4, but lacking a C4 cycle), F. floridana (C3-C4, with partially functional C4 cycle), F. brownii (C4-like) and F. bidentis (C4). The level of PSII activity with varying CI under 210 mbar O2 was very similar in all species. However, the progressive development of C4 characteristics among the species produced an increased efficiency in utilisation of PSII derived energy for CO2 assimilation under 210 mbar O2, due to reduced photorespiratory losses at low CO2 levels. In all species, when photorespiration was limited by low O2 (20 mbar), there was a linear or near linear relationship between the quantum yield of PSII v. the quantum yield of CO2 fixation with varying intercellular levels of CO2 (Ci) indicating that CO2 fixation in this case is linked to PSII activity. When switching from 20 to 210 mbar O2 at atmosphere levels of CO2, there was a similar decrease in the efficiency in utilising PSII activity for CO2 assimilation at different light intensities, but the degree of sensitivity to O2 progressively decreased among the species concomitant with the development of C4 photosynthesis. These results may help explain why there is an advantage to evolution of C4 photosynthesis in environments where Ci becomes limiting.


2002 ◽  
Vol 29 (6) ◽  
pp. 679 ◽  
Author(s):  
Kate Maxwell

This paper originates from a presentation at the IIIrd International Congress on Crassulacean Acid Metabolism, Cape Tribulation, Queensland, Australia, August 2001 Diurnal patterns of photosynthesis in response to environmental variables were investigated in an obligate C3 and a facultative C3-crassulacean acid metabolism (CAM) bromeliad species. A midday depression of photosynthesis occurred in both C3 groups, mediated as a decrease in stomatal conductance in response to increased vapour pressure difference. The response was associated with a reduction in Rubisco activation state during the period of maximum photon flux density. In contrast, the switch to CAM resulted in a strong shift in the pattern of Rubisco carbamylation, with full enzyme activation delayed until the midday period. For the first time it is demonstrated that the pattern of Rubisco activation differs between C3 and CAM plants of the same species under identical conditions. Despite large differences in Rubisco content between C3 and CAM plants, neither the amount of Rubisco or enzyme activity is thought to be limiting for photosynthesis, and it is suggested that Rubisco may function as a nitrogen store. Extreme CO2 diffusion limitation resulted in low rates of atmospheric CO2 assimilation that were associated with high rates of photosynthetic electron transport, and it is likely that photorespiration constitutes a significant electron sink over the entire diurnal course. Leaf morphological and physiological adaptations to drought stress are necessary for the epiphytic lifestyle but limit CO2 assimilation and confound the likelihood of high productivity.


2003 ◽  
Vol 51 (5) ◽  
pp. 573 ◽  
Author(s):  
Michael R. Ngugi ◽  
Mark A. Hunt ◽  
David Doley ◽  
Paul Ryan ◽  
Peter J. Dart

Acclimation of gas exchange to temperature and light was determined in 18-month-old plants of humid coastal (Gympie) and dry inland (Hungry Hills) provenances of Eucalyptus cloeziana F.Muell., and in those of a dry inland provenance of Eucalyptus argophloia Blakely. Plants were acclimated at day/night temperatures of 18/13, 23/18, 28/23 and 33/28�C in controlled-temperature glasshouses for 4 months. Light and temperature response curves were measured at the beginning and end of the acclimation period. There were no significant differences in the shape and quantum-yield parameters among provenances at 23, 28 and 33�C day temperatures. Quantum yield [μmol CO2 μmol–1 photosynthetic photon flux density (PPFD)] ranged from 0.04 to 0.06 and the light response shape parameter ranged from 0.53 to 0.78. Similarly, no consistent trends in the rate of dark respiration for plants of each provenance were identified at the four growth temperatures. Average values of dark respiration for the plants of the three provenances ranged from 0.61 to 1.86 μmol m–2 s–1. The optimum temperatures for net photosynthesis increased from 23 to 32�C for the humid- and from 25 to 33�C for the dry-provenance E. cloeziana and from 21 to 33�C for E. argophloia as daytime temperature of the growth environment increased from 18 to 33�C. These results have implications in predicting survival and productivity of E. cloeziana and E. argophloia in areas outside their natural distribution.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 857 ◽  
Author(s):  
Hanping Mao ◽  
Teng Hang ◽  
Xiaodong Zhang ◽  
Na Lu

With the rise of plant factories around the world, more and more crops are cultivated under artificial light. Studies on effects of lighting strategies on plant growth, such as different light intensities, photoperiods, and their combinations, have been widely conducted. However, research on application of multi-segment light strategies and associated plant growth mechanisms is still relatively lacking. In the present study, two lighting strategies, multi-segment light intensity and extended photoperiod, were compared with a constant light intensity with a 12 h light/12 h dark cycle and the same daily light integral (DLI). Both lighting strategies promoted plant growth but acted via different mechanisms. The multi-segment light intensity lighting strategy promoted plant growth by decreasing non-photochemical quenching (NPQ) of the excited state of chlorophyll and increasing the quantum yield of PSII electron transport (PhiPSII), quantum yield of the carboxylation rate (PhiCO2), and photochemical quenching (qP), also taking advantage of the circadian rhythm. The extended photoperiod lighting strategy promoted plant growth by compensating for weak light stress and increasing light-use efficiency by increasing chlorophyll content under weak light conditions.


2018 ◽  
Vol 36 (2) ◽  
pp. 211-216
Author(s):  
Valéria A Modolo ◽  
Norma M Erismann ◽  
Maria LS Tucci

ABSTRACT Gariroba palm, native to Brazil, produces bitter heart-of-palm, consumed as vegetable in salads, as well as in other Brazilian recipes. This research was carried out in field condition to evaluate diurnal and seasonal variation of gas exchange of gariroba palms cultivated under subtropical conditions, considering their interrelation with some climate elements. Plants were evaluated within two consecutive years, grown under field conditions and irrigated, spaced 2x1 m. Net assimilation of CO2 (PN), stomatal conductance (g s ), transpiration (E), leaf temperature (T l ) within the chamber and the photosynthetic photon flux density (PPFD) were evaluated. Water use efficiency (WUE) was estimated by the ratio: WUE = PN/E. Net CO2 assimilation (PN), showed a plateau in May, observed from 9:30 to 14 h, reaching an average of 5.4 μmol m-2s-1, then declining toward late afternoon. As far as August is concerned, PN increased from the early morning until 11 h, reaching the maximum value of 9.0 µmol m-2s-1. From then on it decreased reaching 6.0 µmol m-2s-1 at 14 h. Gariroba palms cultivated and even under lower autumn and winter temperatures presented gas exchange characteristics consistent to climatic elements.


Sign in / Sign up

Export Citation Format

Share Document