scholarly journals Chloroplast Genome Analysis of Two Medicinal Coelogyne spp. (Orchidaceae) Shed Light on the Genetic Information, Comparative Genomics, and Species Identification

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1332
Author(s):  
Kai Jiang ◽  
Li-Yuan Miao ◽  
Zheng-Wei Wang ◽  
Zi-Yi Ni ◽  
Chao Hu ◽  
...  

Although the medicinal properties of Coelogyne spp. have been previously studied, there is little genomic information providing a valuable tool for the plant taxonomy, conservation, and utilization of this genus. This study used the next-generation MiSeq sequencing platform to characterize the chloroplast (cp) genomes of Coelogyne fimbriata and Coelogyne ovalis. The Maximum Likelihood (ML) and Bayesian (BI) methods were employed to confirm the phylogenetic position of two Coelogyne species based on the whole chloroplast genome sequences. Additionally, we developed eight new primers based on the two cp genomes’ medium variable regions and evaluated the transferability to another 16 Coelogyne species. We constructed phylogenetic trees including 18 Coelogyne species and four outgroup species using the chloroplast fragments with the ML method. Our results showed that the cp genomes of C. fimbriata and C. ovalis contained a small single-copy region (18,839 and 18,851 bp, respectively) and a large single-copy region (87,606 and 87,759 bp, respectively), separated by two same-length inverted-repeat regions (26,675 bp in C. fimbriata and 26,715 bp C. ovalis, respectively). They all contained 86 protein-coding genes, 38 tRNA genes, and eight rRNA genes, revealing strong structure and gene content similarities. The phylogenetic analysis indicated a close relationship between the genera Coelogyne and Pleione. The newly developed primers revealed good transferability among the Coelogyne taxa and provided enough variable sites to distinguish C. fimbriata and C. ovalis. The two complete cp genomes and the eight new primers of Coelogyne provide new genomic data for further studies on phylogenomics, population genetics, and evolutionary history of Coelogyne taxa.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2101 ◽  
Author(s):  
Tong-Jian Liu ◽  
Cai-Yun Zhang ◽  
Hai-Fei Yan ◽  
Lu Zhang ◽  
Xue-Jun Ge ◽  
...  

Species-rich genusPrimulaL. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence ofPrimula sinensisand compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp) were separated by a large single-copy region (82,064 bp) and a small single-copy region (17,725 bp). The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. TheaccDandinfAgenes lacking intact open reading frames (ORF) were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome ofPrimula sinensis, comparing with another available plastome ofP. poissonii. The four most variable regions,rpl36–rps8,rps16–trnQ,trnH–psbAandndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found fromP. sinensistranscriptome showed a high similarity to plastidaccDfunctional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastidaccDhas been functionally transferred to the nucleus inP. sinensis.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2137 ◽  
Author(s):  
Xiang-Xiao Meng ◽  
Yan-Fang Xian ◽  
Li Xiang ◽  
Dong Zhang ◽  
Yu-Hua Shi ◽  
...  

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405–85,557 bp), small single-copy regions (SSC; 18,550–18,768 bp), and a pair of inverted repeats (IRs; 25,576–25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39–53 long repeats and 79–91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


2021 ◽  
Vol 51 (3) ◽  
pp. 326-331
Author(s):  
Sung-Dug OH ◽  
Seong-Kon LEE ◽  
Doh-Won YUN ◽  
Hyeon-Jin SUN ◽  
Hong-Gyu KANG ◽  
...  

The complete chloroplast genome of Zoysia macrostachya Franch. & Sav. isolated in Korea is 135,902 bp long (GC ratio is 38.4%) and has four subregions; 81,546 bp of large single-copy (36.3%) and 12,586 bp of small single-copy (32.7%) regions are separated by 20,885 bp of inverted repeat (44.1%) regions, including 130 genes (83 protein-coding genes, eight rRNAs, and 39 tRNAs). Thirty-nine single nucleotide polymorphisms and 11 insertions and deletion (INDEL) regions were identified from two Z. macrostachya chloroplast genomes, the smallest among other Zoysia species. Phylogenetic trees show that two Z. macrostachya chloroplast genomes are clustered into a single clade. However, we found some incongruency with regard to the phylogenetic position of the Z. macrostachya clade. Our chloroplast genome provides insights into intraspecific variations and species delimitation issues pertaining to the Zoysia species.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yingnan Chen ◽  
Nan Hu ◽  
Huaitong Wu

Salix wilsonii is an important ornamental willow tree widely distributed in China. In this study, an integrated circular chloroplast genome was reconstructed for S. wilsonii based on the chloroplast reads screened from the whole-genome sequencing data generated with the PacBio RSII platform. The obtained pseudomolecule was 155,750 bp long and had a typical quadripartite structure, comprising a large single copy region (LSC, 84,638 bp) and a small single copy region (SSC, 16,282 bp) separated by two inverted repeat regions (IR, 27,415 bp). The S. wilsonii chloroplast genome encoded 115 unique genes, including four rRNA genes, 30 tRNA genes, 78 protein-coding genes, and three pseudogenes. Repetitive sequence analysis identified 32 tandem repeats, 22 forward repeats, two reverse repeats, and five palindromic repeats. Additionally, a total of 118 perfect microsatellites were detected, with mononucleotide repeats being the most common (89.83%). By comparing the S. wilsonii chloroplast genome with those of other rosid plant species, significant contractions or expansions were identified at the IR-LSC/SSC borders. Phylogenetic analysis of 17 willow species confirmed that S. wilsonii was most closely related to S. chaenomeloides and revealed the monophyly of the genus Salix. The complete S. wilsonii chloroplast genome provides an additional sequence-based resource for studying the evolution of organelle genomes in woody plants.


2021 ◽  
Author(s):  
Weicai Song ◽  
Zimeng Chen ◽  
Qi Feng ◽  
Chuxuan Ji ◽  
Chengbo Wei ◽  
...  

Abstract Background: Litsea, Lauraceae, is a group of evergreen trees or shrubs that widely distributed in tropical and subtropical countries, such as Asia and America. Species in Litsea are spontaneously distributed at a maximum altitude of 2,700 m from sea level. Pants and its extractions from Litsea species cover a wide range of medicinal and industrial values. The aromatic oil extracted from Litsea is of great value with citral as its main component. At present, studies related to gene resources of Litsea are limited in the morphological analysis, while studies at the genetic level are insufficient. We therefore firstly assembled and annotated the complete chloroplast genome of nine species in Litsea, carried out a serious of comparative analysis, and completed the construction of phylogenetic tree within genus Litsea. Results: The genome length ranged from 152,051 to 152,717 bp. A total of 128 genes were identified, including 84 protein-coding genes, 36 rRNA genes and 8 tRNA genes. High consistency of codon bias, repeats, divergent analysis, single nucleotide polymorphisms (SNP) and insertions and deletions (InDels) revealed highly conserved chloroplast phenotypes in species within the genus Litsea. Changes in gene length and the present of pseudogene ycf1Ψ that caused by IR contraction and expansion were reported. The non-coding regions, especially atpF - atpH and ndhC - trnV-UAC presented high gene divergence. PsbJ - psbE regions showed remarkably high nucleotide diversity (Pi) values. Furthermore, we constructed two phylogenetic trees, demonstrating two dominant clades within genus Litsea. And the differences between trees constructed by full chloroplast (cp) genome and protein-coding genes were revealed. Conclusion: Overall, the evolutionary pattern of Litsea species regarding structural features, repeats sequences and variations presented high consistency. Valuable genomic resources and theoretical basis were also provided for further research of taxonomic discrepancies, molecular marker-assisted breeding and phylogenetic relationships of Litsea and other angiosperm species.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yongtan Li ◽  
Yan Dong ◽  
Yichao Liu ◽  
Xiaoyue Yu ◽  
Minsheng Yang ◽  
...  

In this study, we assembled and annotated the chloroplast (cp) genome of the Euonymus species Euonymus fortunei, Euonymus phellomanus, and Euonymus maackii, and performed a series of analyses to investigate gene structure, GC content, sequence alignment, and nucleic acid diversity, with the objectives of identifying positive selection genes and understanding evolutionary relationships. The results indicated that the Euonymus cp genome was 156,860–157,611bp in length and exhibited a typical circular tetrad structure. Similar to the majority of angiosperm chloroplast genomes, the results yielded a large single-copy region (LSC) (85,826–86,299bp) and a small single-copy region (SSC) (18,319–18,536bp), separated by a pair of sequences (IRA and IRB; 26,341–26,700bp) with the same encoding but in opposite directions. The chloroplast genome was annotated to 130–131 genes, including 85–86 protein coding genes, 37 tRNA genes, and eight rRNA genes, with GC contents of 37.26–37.31%. The GC content was variable among regions and was highest in the inverted repeat (IR) region. The IR boundary of Euonymus happened expanding resulting that the rps19 entered into IR region and doubled completely. Such fluctuations at the border positions might be helpful in determining evolutionary relationships among Euonymus. The simple-sequence repeats (SSRs) of Euonymus species were composed primarily of single nucleotides (A)n and (T)n, and were mostly 10–12bp in length, with an obvious A/T bias. We identified several loci with suitable polymorphism with the potential use as molecular markers for inferring the phylogeny within the genus Euonymus. Signatures of positive selection were seen in rpoB protein encoding genes. Based on data from the whole chloroplast genome, common single copy genes, and the LSC, SSC, and IR regions, we constructed an evolutionary tree of Euonymus and related species, the results of which were consistent with traditional taxonomic classifications. It showed that E. fortunei sister to the Euonymus japonicus, whereby E. maackii appeared as sister to Euonymus hamiltonianus. Our study provides important genetic information to support further investigations into the phylogenetic development and adaptive evolution of Euonymus species.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2546
Author(s):  
Mengyao Li ◽  
Ran Zhang ◽  
Jie Li ◽  
Kaiming Zheng ◽  
Jiachang Xiao ◽  
...  

Wasabi (Eutrema japonicum) is a vegetable of Brassicaceae family, currently cultivated in Southwest Asia. It is rich in nutritional and has a spicy flavour. It is regarded as a rare condiment worldwide. Its genetic profile for yield improvement and the development of E. japonicum germplasm resources remains unknown. Cognizant of this, this study sequenced and assembled the chloroplast (cp) genome of E. japonicum to enrich our genomic information of wasabi and further understand genetic relationships within the Eutrema species. The structural characteristics, phylogeny, and evolutionary relationship of cp genomes among other Brassicaceae plants were analyzed and compared to those of Eutrema species. The cp genome of E. japonicum has 153,851 bp with a typical quadripartite structure, including 37 tRNA genes, 8 rRNA genes, and 87 protein-coding genes. It contains 290 simple sequence repeats and prefers to end their codons with an A or T, which is the same as other Brassicaceae species. Moreover, the cp genomes of the Eutrema species had a high degree of collinearity and conservation during the evolution process. Nucleotide diversity analysis revealed that genes in the IR regions had higher Pi values than those in LSC (Large single copy) and SSC (Small single copy) regions, making them potential molecular markers for wasabi diversity studies. The analysis of genetic distance between Eutrema plants and other Brassicacea plants showed that intraspecies variation was found to be low, while large differences were found between genera and species. Phylogenetic analysis based on 29 cp genomes revealed the existence of a close relationship amongst the Eutrema species. Overall, this study provides baseline information for cp genome-based molecular breeding and genetic transformation studies of Eutrema plants.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1517
Author(s):  
Se-Hwan Cheon ◽  
Min-Ah Woo ◽  
Sangjin Jo ◽  
Young-Kee Kim ◽  
Ki-Joong Kim

The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.


Sign in / Sign up

Export Citation Format

Share Document