scholarly journals Pseudomonas putida Represses JA- and SA-Mediated Defense Pathways in Rice and Promotes an Alternative Defense Mechanism Possibly through ABA Signaling

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1641
Author(s):  
Rui Wang ◽  
Hai-Lin Wang ◽  
Rui-Ping Tang ◽  
Meng-Ying Sun ◽  
Tang-Min Chen ◽  
...  

The signaling pathways induced by Pseudomonas putida in rice plants at the early plant–rhizobacteria interaction stages, with and without inoculation of Xanthomonas oryzae pv. oryzae, were studied. In the absence of pathogen, P. putida reduced ethylene (ET) production, and promoted root and stem elongation. Interestingly, gene OsHDA702, which plays an important role in root formation, was found significantly up-regulated in the presence of the rhizobacterium. Although X. oryzae pv. oryzae inoculation enhanced ET production in rice plants, P. putida treatment repressed ET-, jasmonic acid (JA)- and salicylic acid (SA)-mediated defense pathways, and induced the biosynthesis of abscisic acid (ABA), and the overexpression of OsHDA705 and some pathogenesis-related proteins (PRs), which in turn increased the susceptibility of the rice plants against the pathogen. Collectively, this is the first work on the defense signaling induced by plant growth-promoting rhizobacteria in plants at the early interaction stages, and suggests that rhizobacteria stimulate an alternative defense mechanism in plants based on ABA accumulation and OsHDA705 signaling.

1995 ◽  
Vol 41 (9) ◽  
pp. 776-784 ◽  
Author(s):  
Xiuying Sun ◽  
Marilyn Griffith ◽  
J. J. Pasternak ◽  
Bernard R. Glick

The plant growth promoting rhizobacterium Pseudomonas putida GR12-2 was originally isolated from the rhizosphere of plants growing in the Canadian High Arctic. Here we report that this bacterium was able to grow and promote root elongation of both spring and winter canola at 5 °C, a temperature at which only a relatively small number of bacteria are able to proliferate and function. In addition, the bacterium survived exposure to freezing temperatures, i.e., −20 and −50 °C. In an effort to determine the mechanistic basis for this behaviour, it was discovered that following growth at 5 °C, P. putida GR12-2 synthesized and secreted to the growth medium a protein with antifreeze activity. Analysis of the spent growth medium, following concentration by ultrafiltration, by SDS-polyacrylamide gel electrophoresis revealed the presence of one major protein with a molecular mass of approximately 32–34 kDa and a number of minor proteins. However, at this point it is not known which of these proteins contains the antifreeze activity.Key words: plant growth promoting rhizobacteria, PGPR, bacterial fertilizer, soil bacteria, antifreeze protein.


2019 ◽  
Vol 32 (6) ◽  
pp. 750-759 ◽  
Author(s):  
Tao Li ◽  
Jun Zhang ◽  
Chaohui Shen ◽  
Huiru Li ◽  
Liyou Qiu

Plant growth–promoting rhizobacteria (PGPR) and fungi-bacterial biofilms are both important biofertilizer inoculants for sustainable agriculture. However, the strongest chemoattractant for bacteria to colonize the rhizosphere and mycelia is not clear. Coincidentally, almost all the PGPRs possess 1-aminocyclopropane-1-carboxylate (ACC) deaminase (AcdS) and can utilize ACC as the sole nitrogen source. Here, we found that ACC was a novel, metabolic dependent and methyl-accepting chemoreceptor–involved chemoattractant for Pseudomonas putida UW4. The chemotactic response of UW4 to ACC is significantly greater than that to the amino acids and organic acids identified in the plant root and fungal hyphal exudates. The colonization counts of the UW4 acdS or cheR deletion mutants in the wheat rhizosphere and on Agaricus bisporus mycelia were reduced one magnitude compared with those of UW4. The colonization counts of UW4 on A. bisporus antisense ACC oxidase mycelia with a high ACC production significantly increased compared with A. bisporus, followed by the UW4 cheR complementary strain and the ethylene chemoreceptor gene–deletion mutant. The colonization counts of the UW4 strains on A. bisporus acdS+ mycelia with a low ACC production decreased significantly compared with A. bisporus wild type. These results suggested that ACC and not ethylene should be the strongest chemoattractant for the PGPR that contain AcdS.


2020 ◽  
Vol 19 (6) ◽  
pp. 15-29
Author(s):  
Yagmur Yilmaz ◽  
Ceknas Erdinc ◽  
Ahmet Akkopru ◽  
Selma Kipcak

Salt stress affects many aspects of plant metabolism and as a result, growth and yield are reduced. The aim in this study was to determine the effects of plant growth promoting rhizobacteria (PGPR) on tomato plants under salt stress. With this aim, the Interland F1 cv. and bacterial isolates of Bacillus thuringiensis CA41/1, Pseudomonas putida 18/1K, Pseudomonas putida S5/4ep, and Pseudomonas putida 30 were used. Salt application was completed in two different doses of 25 and 50 mM NaCl when seedlings reached the stage of 3 true leaves. At the end of the study, in addition to seedling development criteria, some nutrient element contents and rates (K, Ca, Na, K/Na and Ca/Na), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzyme activities, malondialdehyde (MDA) and photosynthetic pigment contents were determined. In the stress environment, PGPR inoculation increased K content by up to 10%, while apart from isolate P. putida no.30, the other isolates lowered Na content by up to 18%. Additionally, 18/1K and S5/4ep isolates were identified to reduce membrane injury index by up to 97%. It was identified that CA41/1, 18/1K and S5/4ep isolates were more effective against salt stress, especially. In general, the plant tolerance levels induced by the bacteria were identified to increase with the increase in salt stress.


2002 ◽  
Vol 48 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Andrei A Belimov ◽  
Vera I Safronova ◽  
Tetsuro Mimura

Responses of rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria, Pseudomonas putida Am2, Pseudomonas putida Bm3, Alcaligenes xylosoxidans Cm4, and Pseudomonas sp. Dp2, containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were studied using growth pouch and soil cultures. In growth pouch culture, the bacteria significantly increased root elongation of phosphorus-sufficient seedlings, whereas root elongation of phosphorus-deficient seedlings was not affected or was even inhibited by the bacteria. Bacterial stimulation of root elongation of phosphorus-sufficient seedlings was eliminated in the presence of a high ammonia concentration (1 mM) in the nutrient solution. Bacterial effects on root elongation of potassium-deficient and potassium-sufficient seedlings were similar. The bacteria also decreased inorganic phosphate content in shoots of potassium- and phosphorus-sufficient seedlings, reduced ethylene production by phosphorus-sufficient seedlings, and inhibited development of root hairs. The effects of treatment with Ag+, a chemical inhibitor of plant ethylene production, on root elongation, ethylene evolution, and root hair formation were similar to bacterial treatments. The number of bacteria on the roots of phosphorus-deficient seedlings was not limited by phosphorus deficiency. In pot experiments with soil culture, inoculation of seeds with bacteria and treatment with aminoethoxyvinylglycine, an inhibitor of ethylene biosynthesis in plants, increased root and (or) shoot biomass of rape plants. Stimulation of plant growth caused by the bacteria was often associated with a decrease in the content of nutrients, such as P, K, S, Mo, and Ba, in shoots, depending on the strain used. The results obtained show that the growth-promoting effects of ACC-utilizing rhizobacteria depend significantly on the nutrient status of the plant.Key words: 1-aminocyclopropane-1-carboxylate deaminase, Brassica napus, PGPR, phosphorus uptake, plant-bacteria interaction, ethylene, Pseudomonas.


Sign in / Sign up

Export Citation Format

Share Document