scholarly journals Synthesis of Self-Healing Waterborne Polyurethane Systems Chain Extended with Chitosan

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 503
Author(s):  
Dae-Il Lee ◽  
Seung-Hyun Kim ◽  
Dai-Soo Lee

In this study, the self-healing properties of waterborne polyurethane (WPU) were implemented by chitosan as a chain extender of polyurethane prepolymers. The physical properties and self-healing efficiency of WPU were studied by changing the molar fractions of chitosan from 0.1 to 0.3. After thermal treatment for 24 h at 110 °C, the self-healing efficiency for the tensile strength of the highest chitosan content (WPU-C3) was found to be 47%. The surface scratch was also completely restored. The efficiency of the sample with the lowest chitosan content (WPU-C1) was found to be 35%, while that of the control sample without chitosan (WPU-C0) was 4%. The self-healing properties of the as-prepared films were attributed to the exchange reactions between the hydroxyl groups of chitosan and the urethane groups in the films at elevated temperature. It is inferred that self-healing WPU can be synthesized by chain extension with chitosan.

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2936
Author(s):  
Gongbo Ye ◽  
Tao Jiang

A self-healing waterborne polyurethane (WPU) materials containing dynamic disulfide (SS) bond was prepared by introducing SS bond into polymer materials. The zeta potential revealed that all the synthesized WPU emulsions displayed excellent stability, and the particle size of them was about 100 nm. The characteristic peaks of N-H and S-S in urethane were verified by FTIR, and the chemical environment of all elements were confirmed by the XPS test. Furthermore, the tensile strength, self-healing process and self-healing efficiency of the materials were quantitatively evaluated by tensile measurements. The results showed that the self-healing efficiency could reach 96.14% when the sample was heat treated at 70 °C for 4 h. In addition, the material also showed a good reprocessing performance, and the tensile strength of the reprocessed film was 3.39 MPa.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2515 ◽  
Author(s):  
Sang Lee ◽  
Se-Ra Shin ◽  
Dai-Soo Lee

A self-healable polyhydroxyurethane (S-PU) was synthesized from sorbitol, a biomass of polyhydric alcohol, by a simple process that is suitable for practical applications. In the synthesis, only two primary hydroxyl groups of sorbitol were considered for the chain extension of the polyurethane (PU) prepolymers to introduce free hydroxyl groups in PU. As a control, conventional PU was synthesized by hexane diol mediated chain extension. Relative to the control, S-PU showed excellent intrinsic self-healing property via exchange reaction, which was facilitated by the nucleophilic addition of the secondary hydroxyl groups without any catalytic assistance and improved tensile strength due to the enhanced hydrogen bonding. We also investigated the effect of the exchange reaction on the topological, mechanical, and rheological properties of S-PU. The suggested synthetic framework for S-PU is a promising alternative to the conventional poly hydroxyurethane, in which cyclic carbonates are frequently reacted with amines. As such, it is a facile and environmentally friendly material for use in coatings, adhesives, and elastomers.


2021 ◽  
Author(s):  
Ricardo Hungria ◽  
Momen Mousa ◽  
Marwa Hassan ◽  
Omar Omar ◽  
Andrea Gavilanes ◽  
...  

2018 ◽  
Vol 9 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Elisa Calabrese ◽  
Pasquale Longo ◽  
Carlo Naddeo ◽  
Annaluisa Mariconda ◽  
Luigi Vertuccio ◽  
...  

PurposeThe purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.Design/methodology/approachHere, a very detailed evaluation on the stereochemistry of two new ruthenium catalysts evidences the crucial role of the spatial orientation of phenyl groups in the N-heterocyclic carbene ligands in determining the temperature range within the curing cycles is feasible without deactivating the self-healing mechanisms (ring-opening metathesis polymerization reactions) inside the thermosetting resin. The exceptional activity and thermal stability of the HG2MesPhSyncatalyst, with the syn orientation of phenyl groups, highlight the relevant potentiality and the future perspectives of this complex for the activation of the self-healing function in aeronautical resins.FindingsThe HG2MesPhSyncomplex, with the syn orientation of the phenyl groups, is able to activate metathesis reactions within the highly reactive environment of the epoxy thermosetting resins, cured up to 180°C, while the other stereoisomer, with the anti-orientation of the phenyl groups, does not preserve its catalytic activity in these conditions.Originality/valueIn this paper, a comparison between the self-healing functionality of two catalytic systems has been performed, using metathesis tests and FTIR spectroscopy. In the field of the design of catalytic systems for self-healing structural materials, a very relevant result has been found: a slight difference in the molecular stereochemistry plays a key role in the development of self-healing materials for aeronautical and aerospace applications.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 543
Author(s):  
Dong-Min Kim ◽  
Junseo Lee ◽  
Ju-Young Choi ◽  
Seung-Won Jin ◽  
Kyeong-Nam Nam ◽  
...  

Although self-healing protective coatings have been widely studied, systematic research on healing performance of the coating according to damage width has been rare. In addition, there has been rare reports of self-healing of the protective coating having damage width wider than 100 µm. In this study, self-healing performance of a microcapsule type self-healing protective coating on cement mortar was studied for the coating with damage width of 100–300 µm. The effect of capsule-loading (20 wt%, 30 wt% and 40 wt%), capsule size (65-, 102- and 135-µm-mean diameter) and coating thickness (50-, 80- and 100-µm-thick undercoating) on healing efficiency was investigated by water sorptivity test. Accelerated carbonation test, chloride ion penetration test and scanning electron microscope (SEM) study were conducted for the self-healing coating with a 300-µm-wide damage. Healing efficiency of the self-healing coating decreased with increasing damage width. As capsule-loading, capsule size or coating thickness increased, healing efficiency of the self-healing coating increased. Healing efficiency of 76% or higher was achieved using the self-healing coating with a 300-µm-wide scratch. The self-healing coating with a 200-µm-wide crack showed healing efficiency of 70% or higher. The self-healing coating having a 300-µm-wide scratch showed effective protection of the substrate mortar from carbonation and chloride ion penetration, which was supported by SEM study.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Ali Berkem ◽  
Ahmet Capoglu ◽  
Turgut Nugay ◽  
Erol Sancaktar ◽  
Ilke Anac

The self-healing ability can be imparted to the polymers by different mechanisms. In this study, self-healing polydimethylsiloxane-graft-polyurethane (PDMS-g-PUR)/Vanadium pentoxide (V2O5) nanofiber supramolecular polymer composites based on a reversible hydrogen bonding mechanism are prepared. V2O5 nanofibers are synthesized via colloidal route and characterized by XRD, SEM, EDX, and TEM techniques. In order to prepare PDMS-g-PUR, linear aliphatic PUR having one –COOH functional group (PUR-COOH) is synthesized and grafted onto aminopropyl functionalized PDMS by EDC/HCl coupling reaction. PUR-COOH and PDMS-g-PUR are characterized by 1H NMR, FTIR. PDMS-g-PUR/V2O5 nanofiber composites are prepared and characterized by DSC/TGA, FTIR, and tensile tests. The self-healing ability of PDMS-graft-PUR and composites are determined by mechanical tests and optical microscope. Tensile strength data obtained from mechanical tests show that healing efficiencies of PDMS-g-PUR increase with healing time and reach 85.4 ± 1.2 % after waiting 120 min at 50 °C. The addition of V2O5 nanofibers enhances the mechanical properties and healing efficiency of the PDMS-g-PUR. An increase of healing efficiency and max tensile strength from 85.4 ± 1.2% to 95.3 ± 0.4% and 113.08 ± 5.24 kPa to 1443.40 ± 8.96 kPa is observed after the addition of 10 wt % V2O5 nanofiber into the polymer.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Xu ◽  
Xianzhi Wang ◽  
Junqing Zuo ◽  
Xiaoyan Liu

Protective carrier is essential for the self-healing of concrete cracks by microbially induced CaCO3 precipitation, owing to the harsh conditions in concrete. In this paper, porous ceramsite particles are used as microbial carrier. Heat treatment and NaOH soaking are first employed to improve the loading content of the ceramsite. The viability of bacterial spores is assessed by urea decomposition measurements. Then, the self-healing efficiency of concrete cracks by spores is evaluated by a series of tests including compressive strength regain, water uptake, and visual inspection of cracks. Results indicate that heat treatment can improve the loading content of ceramsite while not leading to a reduction of concrete strength by the ceramsite addition. The optimal heating temperature is 750°C. Ceramsite particles act as a shelter and protect spores from high-pH environment in concrete. When nutrients and spores are incorporated in ceramsite particles at the same time, nutrients are well accessible to the cells. The regain ratio of the compressive strength increases over 20%, and the water absorption ratio decreases about 30% compared with the control. The healing ratio of cracks reaches 86%, and the maximum crack width healed is near 0.3 mm.


2011 ◽  
Vol 13 (5) ◽  
pp. 426-435 ◽  
Author(s):  
Daniel Coillot ◽  
François O. Méar ◽  
Renaud Podor ◽  
Lionel Montagne

2021 ◽  
Vol 7 ◽  
Author(s):  
Yan Gong ◽  
Jian Xu ◽  
Er-hu Yan ◽  
Jun-hua Cai

In this study, the molecular dynamics simulation was used to explore the effects of carbon-based nanomaterials as binder modifiers on self-healing capability of asphalt binder and to investigate the microscopic self-healing process of modified asphalt binders under different temperature. An asphalt average molecular structure model of PEN70 asphalt binder was constructed firstly. Further, three kinds of carbon-based nanomaterials were added at three different percentages ranging from 0.5 to 1.5% to the base binder to study their effects on the self-healing capability, including two carbon nanotubes (CNT1 and CNT2) and graphene nanoflakes. Combining with the three-dimensional (3D) microcrack model to simulate the asphalt self-healing process, the density analysis, relative concentration analysis along OZ direction, and mean square displacement analysis were performed to investigate the temperature sensitive self-healing characters. Results showed that the additions of CNTs were effective in enhancing the self-healing efficiency of the plain asphalt binder. By adding 0.5% CNT1 and 0.5% CNT2, about 652% and 230% of the mean square displacement of plain asphalt binder were enhanced at the optimal temperatures. However, the use of graphene nanoflakes as an asphalt modifier did not provide any noticeable changes on the self-healing efficiency. It can be found that the self-healing capability of the asphalt was closely related to the temperature. For base asphalt, the self-healing effect became especially high at the phase transition temperature range, while, for the modified asphalt, the enhancement of the self-healing capability at the low phase transition temperature (15°C) became negligible. In general, the optimal healing temperature range of the CNTs modified asphalt binders is determined as 45–55°C and the optimal dosage of the CNTs is about 0.5% over the total weight of the asphalt binder. Considering the effect of carbon-based nanomaterials on the self-healing properties, the recommended carbon-based nanomaterials modifier is CNT1 with the aspect ratio of 1.81.


Sign in / Sign up

Export Citation Format

Share Document