scholarly journals Water Absorption, Hydrothermal Expansion, and Thermomechanical Properties of a Vinylester Resin for Fiber-Reinforced Polymer Composites Subjected to Water or Alkaline Solution Immersion

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 505 ◽  
Author(s):  
Xiaoli Yin ◽  
Yancong Liu ◽  
Yufei Miao ◽  
Guijun Xian

In the present paper, a vinyl ester (VE) resin, potentially used as a resin matrix for fiber-reinforced polymer (FRP) composite sucker rods in oil drilling, FRP bridge cables, or FRP marine structures, was investigated on its resistance to water and alkaline solution immersion in terms of water uptake, hydrothermal expansion, and mechanical properties. A two-stage diffusion model was applied to simulate the water uptake processes. Alkaline solution immersion led to a slightly higher mass loss (approx. 0.4%) compared to water immersion (approx. 0.23%) due to the hydrolysis and leaching of uncured small molecules (e.g., styrene). Water immersion caused the expansion of VE plates monitored with Fiber Bragg Grating (FBG). With the same water uptake, the expansion increased with immersion temperatures, which is attributed to the increased relaxation extent of the resin molecular networks. Although an obvious decrease of the glass transition temperatures (Tg) of VE due to water immersion (5.4 to 6.1 °C/1% water uptake), Tg can be recovered almost completely after drying. Tensile test results indicate that a short-term immersion (less than 6 months) enhances both the strength and elongation at break, while the extension of the immersion time degrades both the strength and elongation. The modulus of VE shows insensitive to the immersion even at elevated temperatures.

2017 ◽  
Vol 21 (4) ◽  
pp. 571-579 ◽  
Author(s):  
Bin Hong ◽  
Guijun Xian ◽  
Zike Wang

Pultruded carbon fiber reinforced polymer plates have been widely used for structural rehabilitation due to their excellent mechanical properties. Even though, the long-term durability performance of carbon fiber reinforced polymer plates is still a concern, especially when subjected to harsh environmental conditions (e.g. water immersion). In the present study, the effects of water immersion at 23°C, 40°C, and 60°C on the degradation of the pultruded carbon fiber reinforced polymer plates were investigated in terms of water uptake and mechanical properties. To elucidate the degradation mechanisms, the resin matrix and the fiber and resin adhesion were also assessed in the same conditions. The test results indicated that water immersion, especially at higher temperatures, leads to serious fiber debonding, and thus the carbon fiber reinforced polymer samples absorb much more water than the resin matrix. In addition, the transverse flexural strength of the carbon fiber reinforced polymer plates, closely correlated to the fiber–resin adhesion, reduced significantly at high temperatures. On the contrary, the resin matrix and carbon fiber reinforced polymer plates show much less degradation subjected to the same immersion conditions. Therefore, to comprehensively understand the long-term durability of a carbon fiber reinforced polymer material, it is necessary to test the variation of the bonding strength between fiber and resin matrix, in addition to the tensile performances in fiber directions of the carbon fiber reinforced polymer plates.


2016 ◽  
Vol 51 (14) ◽  
pp. 2009-2021 ◽  
Author(s):  
Mustafa Bakkal ◽  
M Safa Bodur ◽  
H Ece Sonmez ◽  
B Can Ekim

In this study, weathering effect on untreated textile fiber-reinforced polymer composites and the effect of different chemical treatments for better interfacial adhesion on the outdoor performance were investigated. Degradation of physical, mechanical, and chemical properties of textile fiber-reinforced polymer composites was evaluated through common chemical treatments such as maleated coupling, alkaline treatment, silane treatment, and alkali–silane treatment. Untreated and chemically treated textile fiber-reinforced polymer composites were subjected to water uptake and UV exposure up to 1000 h. Tensile and impact properties were mechanically examined, and the changes on the physical properties due to water uptake, swelling, and color change were investigated. In addition, Fourier transform infrared spectrum analysis was performed in order to evaluate the chemical changes after exposure.


2019 ◽  
Vol 14 ◽  
pp. 155892501985001 ◽  
Author(s):  
Chenggao Li ◽  
Guijun Xian

The elevated temperature resistance and even fire resistance of carbon fiber-reinforced polymer composites were critical concerns in many applications. These properties of a carbon fiber-reinforced polymer depend not only on the degradation of the polymer matrix but also on that of the carbon fibers under elevated temperatures. In this study, influences of elevated temperatures (by 700°C for 30 min) in air on the mechanical properties and microstructures of a carbon fiber were investigated experimentally. It was found that the tensile strength and modulus as well as the diameters of the carbon fibers were reduced remarkably when the treatment temperatures exceeded 500°C. At the same time, the content of the structurally ordered carbonaceous components on the surface of carbon fibers and the graphite microcrystal size were reduced, while the graphite interlayer spacing ( d002) was enhanced. The deteriorated tensile modulus was attributed to the reduced graphite microcrystal size and the reduced thickness of the skin layer of the carbon fiber, while the degraded tensile strength was mainly attributed to the weakened cross-linking between the graphite planes.


2013 ◽  
Vol 339 ◽  
pp. 687-690 ◽  
Author(s):  
Jian Shi ◽  
Jun Kato ◽  
Li Min Bao ◽  
Kiyoshi Kemmochi

Fiber Reinforced Polymer (FRP) composites are used in many applications for their excellent strength-to-weight ratio. These properties are significant barriers for achieving the 3R concept (Recycle, Reuse, and Reduce). Inverse manufacturing is a recent technology that produces new materials and industrial goods from FRP waste based on life-cycle assessment (LCA), and it is expected to help solve the problems of 3R associated with FRP [1-. However, no effective recycling system of FRP has been established because of the cross-linked structure of thermosetting resin matrix and inorganic reinforcement fibers. To investigate the possibility of recycling and reusing both matrix and reinforcements, a project of preventing environmental deterioration was performed. In this study, a new decomposition method for recycling FRP waste by superheated steam was developed. Separation of the resin matrix and reinforcement fiber from the FRP was attempted, the FRP recycled from the separated fibers was remolded; this is called R-FRP.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3805
Author(s):  
Fatima Ghassan Alabtah ◽  
Elsadig Mahdi ◽  
Faysal Fayez Eliyan ◽  
Elsadig Eltai ◽  
Marwan Khraisheh

Corrosion remains one of the major and most costly challenges faced by the steel industry. Various fiber-reinforced polymer coating systems have been proposed to protect metallic piping distribution networks against corrosion. Despite increasing interest among scientific and industrial communities, there is only limited predictive capability for selecting the optimum composite system for a given corrosive condition. In this study, we present a comprehensive evaluation of the electrochemical behavior of two different fiber-reinforced polymer composite systems against the corrosion of carbon steel pipes under a wide range of acidic and corrosive solutions. The composites were made of glass and Kevlar fibers with an epoxy resin matrix and were subjected to corrosive solutions of 0.5 M NaCl, 0.5 M HCl, and 0.5 M H2SO4. The kinetics of the corrosion reactions were evaluated using potentiodynamic polarization (PDP) tests. In addition, electrochemical impedance spectroscopy (EIS) tests were carried out at open circuit potentials (OCPs). It was demonstrated that the glass fiber-reinforced polymer coating system offered the best protection against corrosion, with a high stability against deterioration when compared with epoxy and Kevlar fiber-reinforced polymer coating systems. Scanning electron microscopy images revealed cracks and deteriorated embedded fibers due to acid attack, sustained/assisted by the diffusion of the corrosion species.


Sign in / Sign up

Export Citation Format

Share Document