scholarly journals A Review of Recent Advances in Nanoengineered Polymer Composites

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 644 ◽  
Author(s):  
Vijay Kumar ◽  
Balaganesan ◽  
Lee ◽  
Neisiany ◽  
Surendran ◽  
...  

This review paper initially summarizes the latest developments in impact testing on polymer matrix composites collating the various analytical, numerical, and experimental studies performed since the year 2000. Subsequently, the scientific literature investigating nanofiller reinforced polymer composite matrices as well as self-healing polymer matrix composites by incorporating core-shell nanofibers is reviewed in-depth to provide a perspective on some novel advances in nanotechnology that have led to composite developments. Through this review, researchers can gain a representative idea of the state of the art in nanotechnology for polymer matrix composite engineering, providing a platform for further study of this increasingly industrially significant material, and to address the challenges in developing the next generation of advanced, high-performance materials.

Aerospace ◽  
2003 ◽  
Author(s):  
Ever J. Barbero ◽  
Paolo Lonetti

Contimuum Damage Healig Mechanics is an extension of CDM recently developed by the authors to model healing process in a variety of materials including rock salt, sinterized metals, ceramics, and polymer-matrix composties, bone and so. on. While the theoretical framework, of CDHM is general, parameter identification depends on the particular material being modeled and the specific material tests that are feasible to conduct for that class of materials. This presentation deals with the application of CDHM to the specific field of fiber-reinforced polymer-matrix composites. An overview of CDHM will be presented followed by a description of parameter identification. Results are shown in order in validate the numerical model of healing behavior of damaged polymeric matrix composite. Healed and not healed cases discussed in order show the model capability and to describe possible evoltution of the healed system.


2021 ◽  
Vol 1107 (1) ◽  
pp. 012057
Author(s):  
Fadare Olugbenga Babatunde ◽  
Adewuyi Benjamin Omotayo ◽  
Oladele Isiaka Oluwole ◽  
Kingsley Ukoba

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 201
Author(s):  
Stefano Paolillo ◽  
Ranjita K. Bose ◽  
Marianella Hernández Santana ◽  
Antonio M. Grande

This article reviews some of the intrinsic self-healing epoxy materials that have been investigated throughout the course of the last twenty years. Emphasis is placed on those formulations suitable for the design of high-performance composites to be employed in the aerospace field. A brief introduction is given on the advantages of intrinsic self-healing polymers over extrinsic counterparts and of epoxies over other thermosetting systems. After a general description of the testing procedures adopted for the evaluation of the healing efficiency and the required features for a smooth implementation of such materials in the industry, different self-healing mechanisms, arising from either physical or chemical interactions, are detailed. The presented formulations are critically reviewed, comparing major strengths and weaknesses of their healing mechanisms, underlining the inherent structural polymer properties that may affect the healing phenomena. As many self-healing chemistries already provide the fundamental aspects for recyclability and reprocessability of thermosets, which have been historically thought as a critical issue, perspective trends of a circular economy for self-healing polymers are discussed along with their possible advances and challenges. This may open up the opportunity for a totally reconfigured landscape in composite manufacturing, with the net benefits of overall cost reduction and less waste. Some general drawbacks are also laid out along with some potential countermeasures to overcome or limit their impact. Finally, present and future applications in the aviation and space fields are portrayed.


2018 ◽  
Vol 5 (1) ◽  
pp. 2419-2428 ◽  
Author(s):  
B Sreenivasulu ◽  
BR. Ramji ◽  
Madeva Nagaral

Sign in / Sign up

Export Citation Format

Share Document