scholarly journals Complex Permittivity and Microwave Absorption Properties of OPEFB Fiber–Polycaprolactone Composites Filled with Recycled Hematite (α-Fe2O3) Nanoparticles

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 918 ◽  
Author(s):  
Ebenezer Ekow Mensah ◽  
Zulkifly Abbas ◽  
Raba’ah Syahidah Azis ◽  
Nor Azowa Ibrahim ◽  
Ahmad Mamoun Khamis

Recycled hematite (α-Fe2O3) nanoparticles with enhanced complex permittivity properties have been incorporated as a filler in a polycaprolactone (PCL) matrix reinforced with oil palm empty fruit bunch (OPEFB) fiber for microwave absorption applications. The complex permittivity values were improved by reducing the particle sizes to the nano scale via high-energy ball milling for 12 h. A total of 5–20 wt.% recycled α-Fe2O3/OPEFB/PCL nanocomposites were examined for their complex permittivity and microwave absorption properties via the open ended coaxial (OEC) technique and the transmission/reflection line measurement using a microstrip connected to a two-port vector network analyzer. The microstructural analysis of the samples included X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). At 1 GHz, the real (ε′) and imaginary (ε″) parts of complex permittivity of recycled α-Fe2O3 particles, respectively, increased from 7.88 to 12.75 and 0.14 to 0.40 when the particle size was reduced from 1.73 μm to 16.2 nm. A minimum reflection loss of −24.2 dB was achieved by the 20 wt.% nanocomposite at 2.4 GHz. Recycled α-Fe2O3 nanoparticles are effective fillers for microwave absorbing polymer-based composites in 1–4 GHz range applications.

2010 ◽  
Vol 148-149 ◽  
pp. 893-896 ◽  
Author(s):  
Ze Yang Zhang ◽  
Xiang Xuan Liu ◽  
You Peng Wu

M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were successfully prepared by the sol-gel method and solution phase reduction method, respectively. The crystalline and morphology of particles were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The composite coatings with SrFe12O19 ferrites and FeNi3 nanoplatelets in polyvinylchloride matrix were prepared. The microwave absorption properties of these coatings were investigated in 2-18GHz frequency range. The results showed that the M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were obtained and they presented irregular sheet shapes. With the increase of the coating thickness, the absorbing peak value moves to the lower frequency. The absorbing peak values of the wave increase along with the increasing of the content of FeNi3 nanoplatelets filling fraction. When 40% SrFe12O19 ferrites is doped with 20% mass fraction FeNi3 nanoplatelets to prepare composite with 1.5mm thickness, the maximum reflection loss is -24.8 dB at 7.9GHz and the -10 dB bandwidth reaches 3.2GHz.


2014 ◽  
Vol 28 (10) ◽  
pp. 1450037 ◽  
Author(s):  
HONGJING WU ◽  
LIUDING WANG ◽  
YIMING WANG

In this paper, we have synthesized meso-oxides (i.e., Co 3 O 4 and NiO ) by using mesoporous silica as hard template. The microstructures and chemical compositions of the corresponding meso-oxides were characterized by the Transmission electron microscope-selected area electron diffusion (TEM-SAED), X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), respectively. And, their electromagnetic and microwave absorption properties were investigated in the frequency range of 2–18 GHz. The results indicate that meso-oxide templated from KIT-6 (i.e., meso-K– Co / Ni ) exhibit a dual absorption characteristic compared with those using SBA-15 as hard template. This phenomenon suggests that meso-oxides templated from SBA-15 and KIT-6 can exhibit different microwave absorption behaviors due to their respective microstructures.


2019 ◽  
Vol 966 ◽  
pp. 302-307
Author(s):  
Erfan Handoko ◽  
Iwan Sugihartono ◽  
Mangasi Alion Marpaung ◽  
Ucu Cahyana ◽  
Sovian Aritonang ◽  
...  

Microwave absorption properties of double layer magnetic absorbers based on BaFe12O19 (BFO) and BaFe10CoZnO19 (BFCZO) have been investigated in X-band (8.2–12.4 GHz) frequencies. The BFO and BFCZO were prepared by using a solid state reaction process. The crystalline structures were investigated by X-ray diffraction (XRD), The complex permittivity and permeability are determined using Vector Network Analyzer (VNA) in a range from 8.2 GHz to 12.4 GHz. The double layer magnetic absorbers, composed of the BFO as matching layer and the BFCZO as absorption layer, with a total thickness of 5 mm, showed an effective reflection loss (RL) an effective absorbing bandwidth below –5 dB.


2009 ◽  
Vol 67 ◽  
pp. 59-64 ◽  
Author(s):  
Rahul Sharma ◽  
Ramesh Chandra Agarwala ◽  
Vijaya Agarwala

Nano radar absorbing material (NRAM) i.e. BaMe2Fe16O27 (Me2+=Fe2+) powder (10 nm) is coated with amorphous Ni-P nano layer (5-10 nm) by using electroless (EL) technology to develop EL Ni-P/NRAM nanocomposite powder. The experimental processes parameters and EL Ni-P bath composition were optimized to obtain the deposition. As-deposited nanocomposite powder was microwave annealed (MWA) with increasing radiation power from 160 to 760 watts for 5 minutes. The surface morphology, elemental contents, phase transformation and magnetic properties of NRAM powders were examined under field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) respectively. Maximum reflection loss (RL) 33.75 dB at 15.80 GHz for nanocomposite powder MWA at 760 watt was obtained the absorption range under −15 dB is from 13.76 to 16.77 GHz with 2 mm thickness layer in Ku Band. Excellent microwave absorption properties due to accurate electromagnetic (EM) match in the nanocomposite microstructure, a strong natural resonance and multipolarization. Such (Ni+ Ni3P)/NRAM nanocomposite powders may be attractive candidates for EM absorption.


2010 ◽  
Vol 663-665 ◽  
pp. 1252-1255 ◽  
Author(s):  
Gui Mei Shi ◽  
Shu Lian ◽  
Ge Song ◽  
Jin Bing Zhang

BN coated Ni nanocapsules were prepared by arc evaporating Ni-B amorphous alloy powders synthesized by a mechanochemical reaction, and their microstructure, surface component as well as electromagnetic properties (2-18 GHz) were investigated by means of high-resolution transmission electron microscopy, X-ray diffraction , photoluminescence spectra (PL) and a network analyzer, respectively. The reflection loss R (dB) of the nanocapsules less than -20 dB was obtained in the frequency range of 4.3-18 GHz for an absorber thickness of 1.4-6 mm. An optimal reflection loss of -32.0 dB was reached at 13 GHz with an absorber thickness of 2 mm. The microwave absorptive mechanisms of BN-coated Ni nanocapsule absorbent were discussed.


Author(s):  
Yunasfi Yunas ◽  
Wisnu Ari Adi ◽  
Mashadi Mashadi ◽  
Putri Astari Rahmy

Nickel ferrite (NixFe3-xO4) have been synthesized using solid state reaction with composition (2x)NiO : (3-x)Fe2O3 (x = 0.5; 1.0; 1.5 dan 2.0) in mol in wt%. Mixing of this powder was milled with HEM (High Energy Milling) for 10 hours, and then sintered at 1000 °C for 3 h. X-ray diffraction pattern indicates that the all of samples are single phase in this stage. FTIR (Fourier transform infrared) analysis showed two absorption bands in the range of ~410 - ~600 cm-1 related to octahedral and tetrahedral sites. The magnetic measurement using vibrating sample magnetometer (VSM) shows that the sample exhibited a ferromagnetic behaviour with its coercivity value in the range of 164-217 Oe, and the maximum value wasshowed by x =1.5. VNA (Vector Network Analyzer) characterization shows the ability electromagnetic wave absorption with RL (reflection loss) value of -28 dB occurs at frequency of 10.98 GHz. It means that the Ni1.5Fe1.5O4 sample can absorb microwave about ~96 % at 10.98 GHz.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2162
Author(s):  
Pengze Yan ◽  
Yongqian Shen ◽  
Xueyan Du ◽  
Junkai Chong

The utilization of nickel slag has attracted much attention due to its high-content of valuable elements. As a part of these efforts, this work focuses on whether magnetite crystals, obtained from nickel slag via molten oxidation, magnetic separation, and ball-milling can be used as a microwave absorber. The composition, morphology, microstructure, magnetic properties, and microwave absorption performance were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and vector network analysis (VNA). The results reveal that the magnetite crystals exhibit excellent microwave absorption properties because of the synergistic action between dielectric loss and magnetic loss. The minimum reflection loss (RL) of the particles obtained after 6 h ball-milling reaches −34.0 dB at 16.72 GHz with thickness of 5 mm. The effective frequency bandwidth (RL ≤ −10 dB) is 4.8–5.4 GHz and 15.9–17.6 GHz. Interfacial polarization of the particles could play a crucial role in improving absorbing properties because several components contained in the particles can dissipate electromagnetic wave effectively. The current study could show great potential in the preparation of magnetite crystals and utilization of nickel slag.


Sign in / Sign up

Export Citation Format

Share Document