scholarly journals Isoporous Membranes from Novel Polystyrene-b-poly(4-vinylpyridine)-b-poly(solketal methacrylate) (PS-b-P4VP-b-PSMA) Triblock Terpolymers and Their Post-Modification

Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 41 ◽  
Author(s):  
Sarah Saleem ◽  
Sofia Rangou ◽  
Clarissa Abetz ◽  
Volkan Filiz ◽  
Volker Abetz

In this paper, the formation of nanostructured triblock terpolymer polystyrene-b-poly(4-vinylpyridine)-b-poly(solketal methacrylate) (PS-b-P4VP-b-PSMA), polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA) membranes via block copolymer self-assembly followed by non-solvent-induced phase separation (SNIPS) is demonstrated. An increase in the hydrophilicity was observed after treatment of non-charged isoporous membranes from PS-b-P4VP-b-PSMA, through acidic hydrolysis of the hydrophobic poly(solketal methacrylate) PSMA block into a hydrophilic poly(glyceryl methacrylate) PGMA block, which contains two neighbored hydroxyl (–OH) groups per repeating unit. For the first time, PS-b-P4VP-b-PSMA triblock terpolymers with varying compositions were successfully synthesized by sequential living anionic polymerization. Composite membranes of PS-b-P4VP-b-PSMA and PS-b-P4VP-b-PGMA triblock terpolymers with ordered hexagonally packed cylindrical pores were developed. The morphology of the membranes was studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM). PS-b-P4VP-b-PSMA triblock terpolymer membranes were further treated with acid (1 M HCl) to get polystyrene-b-poly(4-vinylpyridine)-b-poly(glyceryl methacrylate) (PS-b-P4VP-b-PGMA). Notably, the pristine porous membrane structure could be maintained even after acidic hydrolysis. It was found that membranes containing hydroxyl groups (PS-b-P4VP-b-PGMA) show a stable and higher water permeance than membranes without hydroxyl groups (PS-b-P4VP-b-PSMA), what is due to the increase in hydrophilicity. The membrane properties were analyzed further by contact angle, protein retention, and adsorption measurements.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2836
Author(s):  
Jin Shao ◽  
Yi Yang ◽  
Xiaoyan Zhang ◽  
Liming Shen ◽  
Ningzhong Bao

In this study, we have successfully prepared a free-standing Si/void/rGO yolk–shell structured electrode via the electrostatic self-assembly using protonated chitosan. When graphene oxide (GO) is dispersed in water, its carboxyl and hydroxyl groups on the surface are ionized, resulting in the high electronegativity of GO. Meanwhile, chitosan monomer contains -NH2 and -OH groups, forming highly electropositive protonated chitosan in acidic medium. During the electrostatic interaction between GO and chitosan, which results in a rapid coagulation phenomenon, Si/SiO2 nanoparticles dispersed in GO can be uniformly encapsulated between GO sheets. The free-standing Si/void/rGO film can be obtained by freeze-drying, high-pressure compression, thermal reduction and HF etching technology. Our investigation shows that after 200 charge/discharge cycles at the current density of 200 mA·g−1, the specific discharge capacity of the free-standing electrode remains at 1129.2 mAh·g−1. When the current density is increased to 4000 mA·g−1, the electrode still has a specific capacity of 469.2 mAh·g−1, showing good rate performance. This free-standing electrode with a yolk–shell structure shows potential applications in the field of flexible lithium-ion batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1172
Author(s):  
Ádám Prekob ◽  
Mahitha Udayakumar ◽  
Gábor Karacs ◽  
Ferenc Kristály ◽  
Gábor Muránszky ◽  
...  

Glassy carbon foam (GCF) catalyst supports were synthesized from waste polyurethane elastomers by impregnating them in sucrose solution followed by pyrolysis and activation (AC) using N2 and CO2 gas. The palladium nanoparticles were formed from Pd(NO3)2. The formed palladium nanoparticles are highly dispersive because the mean diameters are 8.0 ± 4.3 (Pd/GCF), 7.6 ± 4.2 (Pd/GCF-AC1) and 4.4 ± 1.6 nm (Pd/GCF-AC2). Oxidative post-treatment by CO2 of the supports resulted in the formation of hydroxyl groups on the GCF surfaces, leading to a decrease in zeta potential. The decreased zeta potential increased the wettability of the GCF supports. This, and the interactions between –OH groups and Pd ions, decreased the particle size of palladium. The catalysts were tested in the hydrogenation of nitrobenzene. The non-treated, glassy-carbon-supported catalyst (Pd/GCF) resulted in a 99.2% aniline yield at 293 K and 50 bar hydrogen pressure, but the reaction was slightly slower than other catalysts. The catalysts on the post-treated (activated) supports showed higher catalytic activity and the rate of hydrogenation was higher. The maximum attained aniline selectivities were 99.0% (Pd/GCF-AC1) at 293 K and 98.0% (Pd/GCF-AC2) at 323 K.


2010 ◽  
Vol 46 (9) ◽  
pp. 1434 ◽  
Author(s):  
Meng Yang ◽  
Shanfu Lu ◽  
Jinlin Lu ◽  
San Ping Jiang ◽  
Yan Xiang

2012 ◽  
Vol 622-623 ◽  
pp. 1779-1783
Author(s):  
Richard Appiah-Ntiamoah ◽  
Xuan Thang Mai ◽  
Francis W.Y. Momade ◽  
Hern Kim

In this study, the adsorption capacity of expanded perlite (EP) for benzene at low concentrations in water was investigated after EP was treated with sodium hydroxide (NaOH). IR spectra used to characterize the modified EP showed that there was no bonding between NaOH and the hydroxyl groups on the surface of EP. However, the NaOH provided a basic medium for negatively charged surface oxide ions (-SO-) to form on EP. This fact was corroborated by pH readings of the modification solution. This reduced in pH from 10 to 9 at the end of the reaction which indicated that the hydroxyl OH- groups on the EP underwent deprotonation and hence releases H+ into the solution, and also positive sites on EP adsorbed OH- ions from the base solution. Mahir et al. in their paper Zeta potential of unexpanded and expanded perlite samples in various electrolyte media confirmed that EP has no isoelectric point and exhibits negative zeta potential in the pH range of 2-11. The surface oxides (-SO-) were believed to have given EP it adsorptive potential. Adsorption isotherm values correlated reasonably well with the Langmuir isotherm model and it parameters (qo and K) were obtained using linear regression analysis. A maximum adsorption capacity (qo) value of 19.42 mg/g was achieved.


2010 ◽  
Vol 148-149 ◽  
pp. 924-928
Author(s):  
Xue Min Yan ◽  
Yuan Zhu Mi

Two kinds of mesoporous HPW/SiO2 composites, which have been synthesized respectively by the amino-functionalized (AF) method and evaporation-induced self-assembly (EISA) method, have been used as catalysts in the oxidative desulfurization process of dibenzothiophene(DBT). The catalytic performance results show that the catalyst synthesized by EISA method holds higher catalytic activity than that synthesized by the AF method. The difference of catalytic activity can be attributed to the different synthesis mechanism of two kinds of composites. In the AF method, the bonding force between HPW and SiO2 is strong acid-base interaction, which damages the Keggin structure. Whereas in the EISA process, electrostatic force and hydrogen bonds between W=O groups and Si-OH groups are main bonding forces. The hydrogen bond holds the electron-withdrawing effect, which increases the activity of nonbonding W=O groups in HPW and then results in the enhancement of the catalytic activity.


2018 ◽  
Vol 7 (10) ◽  
pp. 1168-1173 ◽  
Author(s):  
Anton H. Hofman ◽  
Ivan Terzic ◽  
Marc C. A. Stuart ◽  
Gerrit ten Brinke ◽  
Katja Loos

1976 ◽  
Vol 54 (14) ◽  
pp. 2228-2230 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham

The conformational preferences in CCl4 solution at 32 °C of the hydroxyl groups in bromine derivatives of 1,3-dihydroxybenzene are deduced from the long-range spin–spin coupling constants between hydroxyl protons and ring protons over five bonds. Two hydroxyl groups hydrogen bond to the same bromine substituent in 2-bromo-1,3-dihydroxybenzene but prefer to hydrogen bond to different bromine substituents when available, as in 2,4-dibromo-1,3-dihydroxybenzene. When the OH groups can each choose between two ortho bromine atoms, as in 2,4,6-tribromoresorcinol, they apparently do so in a very nearly statistical manner except that they avoid hydrogen bonding to the common bromine atom.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2867
Author(s):  
Myoung Jun Park ◽  
Grace M. Nisola ◽  
Dong Han Seo ◽  
Chen Wang ◽  
Sherub Phuntsho ◽  
...  

Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration.


2017 ◽  
Vol 17 (1) ◽  
pp. 95 ◽  
Author(s):  
Sri Sudiono ◽  
Mustika Yuniarti ◽  
Dwi Siswanta ◽  
Eko Sri Kunarti ◽  
Triyono Triyono ◽  
...  

Humic acid (HA) extracted from peat soil according to the recommended procedure of the International Humic Substances Society (IHSS) has been tested to remove AuCl4- from aqueous solution. The removal was optimum at pH 2.0 and it was mainly dictated by attachment through hydrogen bonding to unionized carboxyl (–COOH) groups and reduction by the action of the hydroxyl (–OH) groups to gold (Au) metal. The removal of AuCl4- improved after HA was purified through repeated immersion and shaking in a mixed solution containing 0.1 M HCl and 0.3 M HF. When the purification led to the sharp decrease in ash content from 39.34 to 0.85% (w/w) and significant increase in both the –COOH and –OH contents from 3240 to 3487 mmol/kg and from 4260 to 4620 mmol/kg, respectively; the removal of AuCl4- improved from 0.105 to 0.133 mmol/g. This improvement of AuCl4- removal by the purified HA was accompanied by higher ability in reduction to Au metal. The attached AuCl4- on –COOH groups of both crude and purified HAs was qualitatively observed by the characterization result of FT-IR spectroscopy, while the presence of Au metal on the surface of those HAs was verified by the characterization result of XRD.


Sign in / Sign up

Export Citation Format

Share Document