scholarly journals Acidity Suppression of Hole Transport Layer via Solution Reaction of Neutral PEDOT:PSS for Stable Perovskite Photovoltaics

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 129 ◽  
Author(s):  
Minseong Kim ◽  
Minji Yi ◽  
Woongsik Jang ◽  
Jung Kyu Kim ◽  
Dong Hwan Wang

Poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) is typically used for hole transport layers (HTLs), as it exhibits attractive mechanical, electrical properties, and easy processability. However, the intrinsically acidic property can degrade the crystallinity of perovskites, limiting the stability and efficiency of perovskite solar cells (PSCs). In this study, inverted CH3NH3PbI3 photovoltaic cells were fabricated with acidity suppressed HTL. We adjusted PEDOT:PSS via a solution reaction of acidic and neutral PEDOT:PSS. And we compared the various pH-controlled HTLs for PSCs devices. The smoothness of the pH-controlled PEDOT:PSS layer was similar to that of acidic PEDOT:PSS-based devices. These layers induced favorable crystallinity of perovskite compared with acidic PEDOT:PSS layers. Furthermore, the enhanced stability of pH optimized PEDOT:PSS-based devices, including the prevention of degradation by a strong acid, allowed the device to retain its power conversion efficiency (PCE) value by maintaining 80% of PCE for approximately 150 h. As a result, the pH-controlled HTL layer fabricated through the solution reaction maintained the surface morphology of the perovskite layer and contributed to the stable operation of PSCs.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2191
Author(s):  
Xiaolan Wang ◽  
Xiaoping Zou ◽  
Jialin Zhu ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

It is crucial to find a good material as a hole transport layer (HTL) to improve the performance of perovskite solar cells (PSCs), devices with an inverted structure. Polyethylene dioxythiophene-poly (styrene sulfonate) (PEDOT:PSS) and inorganic nickel oxide (NiOx) have become hotspots in the study of hole transport materials in PSCs on account of their excellent properties. In our research, NiOx and PEDOT: PSS, two kinds of hole transport materials, were prepared and compared to study the impact of the bottom layer on the light absorption and morphology of perovskite layer. By the way, some experimental parameters are simulated by wx Analysis of Microelectronic and Photonic Structures (wxAMPS). In addition, thin interfacial layers with deep capture levels and high capture cross sections were inserted to simulate the degradation of the interface between light absorption layer and PEDOT:PSS. This work realizes the combination of experiment and simulation. Exploring the mechanism of the influence of functional layer parameters plays a vital part in the performance of devices by establishing the system design. It can be found that the perovskite film growing on NiOx has a stronger light absorption capacity, which makes the best open-circuit voltage of 0.98 V, short-circuit current density of 24.55 mA/cm2, and power conversion efficiency of 20.01%.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 978
Author(s):  
Chaoqun Lu ◽  
Weijia Zhang ◽  
Zhaoyi Jiang ◽  
Yulong Zhang ◽  
Cong Ni

The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs.


2019 ◽  
Vol 5 (2) ◽  
pp. eaav2012 ◽  
Author(s):  
Mojtaba Abdi-Jalebi ◽  
M. Ibrahim Dar ◽  
Satyaprasad P. Senanayak ◽  
Aditya Sadhanala ◽  
Zahra Andaji-Garmaroudi ◽  
...  

One source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO2 electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO2 and Spiro-OMeTAD alone. For PSCs with graded HTL structure, we demonstrate efficiency of up to 21.6% and an extended power output of over 550 hours of continuous illumination at AM1.5G, retaining more than 90% of the initial performance and thus validating our approach. Our findings represent a breakthrough in the construction of stable PSCs with minimized nonradiative losses.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1227 ◽  
Author(s):  
Byung Kim ◽  
Woongsik Jang ◽  
Dong Wang

Nickel oxide (NiOx)–based perovskite solar cells (PSCs) have recently gained considerable interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx sol-gel depending on the chain length of various solvents” method that eschews toxic catalysts, to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer. Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–based devices.


2019 ◽  
Vol 74 (8) ◽  
pp. 665-672 ◽  
Author(s):  
Julian Höcker ◽  
David Kiermasch ◽  
Philipp Rieder ◽  
Kristofer Tvingstedt ◽  
Andreas Baumann ◽  
...  

AbstractThe organic and hydrophobic polymer poly[N, N′-bis(4-butilphenyl)-N, N′-bis(phenyl)-benzidine] (polyTPD) represents a promising hole transport layer (HTL) for perovskite photovoltaics due to its suitable energy levels, whereby its highest occupied molecular orbital level matches well with the valence band level of methylammonium lead triiodide (CH3NH3PbI3, MAPbI3) perovskite. However, processing a perovskite layer from the solution on the surface of this organic material, is found to be difficult due to the surface properties of the latter. In this study, we evaluate efficient p-i-n type MAPbI3 perovskite solar cells employing differently processed polyTPD layers. We found that the surface coverage of the MAPbI3 perovskite layer strongly depends on the preparation method of the underlying polyTPD layer. By varying the solvents for the polyTPD precursor, its concentration, and by applying an optimised two-step perovskite deposition technique we increased both the surface coverage of the perovskite layer as well as the power conversion efficiency (PCE) of the corresponding solar cell devices. Our simple solvent-engineering approach demonstrates that no further interface modifications are needed for a successful preparation of efficient planar photovoltaic devices with PCEs in the range of 15 %–16 %.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 682 ◽  
Author(s):  
Chien-Jui Cheng ◽  
Rathinam Balamurugan ◽  
Bo-Tau Liu

In this study, we incorporated silver nanowires (AgNWs) into poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for inverted perovskite solar cells (PVSCs). The effect of AgNW incorporation on the perovskite crystallization, charge transfer, and power conversion efficiency (PCE) of PVSCs were analyzed and discussed. Compared with neat PEDOT:PSS HTL, incorporation of few AgNWs into PEDOT:PSS can significantly enhance the PCE by 25%. However, the AgNW incorporation may result in performance overestimation due to the lateral charge transfer. The corrosion of AgNWs with a perovskite layer was discussed. Too much AgNW incorporation may lead to defects on the interface between the HTL and the perovskite layer. An extra PEDOT:PSS layer over the pristine PEDOT:PSS-AgNW layer can prevent AgNWs from corrosion by iodide ions.


2019 ◽  
Vol 7 (14) ◽  
pp. 8073-8077 ◽  
Author(s):  
Iwan Zimmermann ◽  
Paul Gratia ◽  
David Martineau ◽  
Giulia Grancini ◽  
Jean-Nicolas Audinot ◽  
...  

Improved charge extraction in carbon-based fully printable hole transport layer-free mesoscopic perovskite solar cells with excellent long-term stability.


RSC Advances ◽  
2017 ◽  
Vol 7 (74) ◽  
pp. 46651-46656 ◽  
Author(s):  
Ian Y. Y. Bu ◽  
Yaw-Shyan Fu ◽  
Jian-Fu Li ◽  
Tzung-Fang Guo

In this study, a fully scalable and cost-effective approach for fabricating PSCs using the combination of direct electrostatic spray deposition for (HTL and perovskite layer) and thermal evaporation on conductive substrates.


2021 ◽  
Vol 9 (14) ◽  
pp. 9266-9271
Author(s):  
Mengjiong Chen ◽  
Hong Wei Qiao ◽  
Ziren Zhou ◽  
Bing Ge ◽  
Jingjing He ◽  
...  

Alkali metal ions spontaneously diffuse from the hole transport layer into perovskite layer and electron transport layer, which could enhance the conductivity of NiOx films and modulate perovskite layer electronic states, simultaneously.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hong Zhong ◽  
Renlai Zhou ◽  
Xiaoqing Wu ◽  
Xiaoyun Lin ◽  
Ya Wang ◽  
...  

We report our investigation on the S-shaped current–voltage characteristics in a hot-casting–processed (BA)2 (MA)3Pb4I13 Ruddlesden–Popper (RP) perovskite solar cell. The two-dimensional perovskite solar cells are fabricated with NiOx as the hole transport layer (HTL), which leads to significantly high open-circuit voltage (Voc). The champion device shows a Voc of 1.21 V and a short current density (Jsc) of 17.14 mA/cm2, leading to an overall power conversion efficiency (PCE) of 13.7%. Although the PCE is much higher than the control device fabricated on PEDOT:PSS, a significant S-shaped current–voltage behavior is observed in these NiOx-based devices. It is found that the S-shaped current–voltage behavior is related to the lower dimensional phase distribution and crystallinity at the bottom interface of the RP perovskite layer, and the S-shaped distortion is less severe after the device ageing test.


Sign in / Sign up

Export Citation Format

Share Document