scholarly journals Temperature-Dependence of Rubber Hyperelasticity Based on the Eight-Chain Model

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 932 ◽  
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma ◽  
Zhaoxuan Zou ◽  
Qingling Zhang ◽  
...  

Rubber-based materials are widely used in a variety of industrial applications. In these applications, rubber components withstand various loading conditions over a range of temperatures. It is of great significance to study the mechanical behavior of vulcanized rubber at different temperatures, especially in a range of high temperatures. The temperature dependence of the constitutive behavior of filled rubber is important for the performance of the rubber. However, only a few constitutive models have been reported that investigate the stress–temperature relationship. In this paper, based on an analysis of experimental data, the effects of temperature on the hyperelastic behaviors of both natural rubber and filled rubber, with different mass fractions of carbon black, were studied. The regulation of stress and strain of natural rubber and filled rubber with temperature was revealed. In addition, an eight-chain model that can reasonably characterize the experimental data at different temperatures was proved. An explicit temperature-dependent constitutive model was developed based on the Arruda-Boyce model to describe the stress–strain response of filled rubber in a relatively large temperature range. Meanwhile, it was proved that the model can predict the effect of temperature on the hyperelastic behavior of filled rubber. Finally, the improved Arruda-Boyce model was used to obtain the material parameters and was then successfully applied to finite element analysis (FEA), which showed that the model has high application value. In addition, the model had a simple form and could be conveniently applied in related performance test of actual production or finite element analysis.

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.


Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


1990 ◽  
Vol 112 (4) ◽  
pp. 481-483 ◽  
Author(s):  
Mack G. Gardner-Morse ◽  
Jeffrey P. Laible ◽  
Ian A. F. Stokes

This technical note demonstrates two methods of incorporating the experimental stiffness of spinal motion segments into a finite element analysis of the spine. The first method is to incorporate the experimental data directly as a stiffness matrix. The second method approximates the experimental data as a beam element.


2019 ◽  
Vol 823 ◽  
pp. 141-144
Author(s):  
Tung Sheng Yang ◽  
Yong Nan Chen

The feasibility of forging of AL-1050 alloy of cylindrical heatsink under warm conditions is demonstrated in the present work. The stress-strain curves and friction factor play an important role in the cylindrical heatsink forging. The purpose of forging lubrication is to reduce friction between blank and die, and to decrease resistance of metal flow to die. The stress-strain curves at different temperatures are obtained by compressing tests. The friction factor between 1050 aluminum alloy and die material are determined at different temperatures by ring compression tests with graphite lubricants. The compressing and ring compressing tests are carried out by using the computerized screw universal testing machine. The finite element method is used to investigate the forming characters of the forging process. To verify the prediction of FEM simulation in the cylindrical heatsink forging process, the experimental parameters such as stress-strain curves and fiction factor, are as the input data during analysis. Maximum forging load and effective stress distribution are determined of the heatsink forging, using the finite element analysis. Finally, the cylindrical heatsink parts are formed by the forging machine under the conditions using finite element analysis.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


2012 ◽  
Vol 184-185 ◽  
pp. 534-537
Author(s):  
Jing Jing Zhou ◽  
Ai Dong Guo ◽  
Chun Hui Li ◽  
Zhen Jiang Lin ◽  
Tie Zhuang Wu

By setting contact sets, achieved overall analysis results of the mechanical properties with omni-direction side-loading forklift truck lifting system based on COSMOSWorks. And made an experimental measurements to omni-direction side-loading forklift truck lifting system by electrometric methods. There was a good relevance between experimental data and calculation values, and the deviation was basically within the 10 percent allowed. Finally, in this way it verified the correctness and reliability of the finite element analysis by experimental measurements. Ensured the omni-direction side-loading forklift truck lifting system could be safe and efficient to work. And also it laid a foundation for subsequent structural optimization.


2005 ◽  
Vol 297-300 ◽  
pp. 16-21
Author(s):  
Chang Su Woo ◽  
Wan Doo Kim ◽  
Jae Do Kwon ◽  
Wan Soo Kim

Fatigue lifetime prediction methodology of the vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter determined from fatigue test. Finite element analysis of 3D dumbbell specimen of natural rubber was performed based on a hyper-elastic material model determined from the tension, compression and shear tests. Stroke controlled fatigue tests were conducted using fatigue specimens at different levels of mean strain. The Green-Lagrange strain at the critical location determined from the FEM was used for evaluating the fatigue damaged parameter of the natural rubber. It was shown that the maximum Green-Lagrange strain was proper damage parameter, taking the mean strain effects into account. Fatigue lives of the natural rubber are predicted by using the fatigue damage parameters at the critical location. Predicted fatigue lives of the natural rubber agreed fairly well the experimental fatigue lives a factor of two.


2008 ◽  
Vol 606 ◽  
pp. 103-118 ◽  
Author(s):  
Jing Zhe Pan ◽  
Ruo Yu Huang

Predicting the sintering deformation of ceramic powder compacts is very important to manufactures of ceramic components. In theory the finite element method can be used to calculate the sintering deformation. In practice the method has not been used very often by the industry for a very simple reason – it is more expensive to obtain the material data required in a finite element analysis than it is to develop a product through trial and error. A finite element analysis of sintering deformation requires the shear and bulk viscosities of the powder compact. The viscosities are strong functions of temperature, density and grain-size, all of which change dramatically in the sintering process. There are two ways to establish the dependence of the viscosities on the microstructure: (a) by using a material model and (b) by fitting the experimental data. The materials models differ from each other widely and it can be difficult to know which one to use. On the other hand, obtaining fitting functions is very time consuming. To overcome this difficulty, Pan and his co-workers developed a reduced finite element method (Kiani et. al. J. Eur. Ceram. Soc., 2007, 27, 2377-2383; Huang and Pan, J. Eur. Ceram. Soc., available on line, 2008) which does not require the viscosities; rather the densification data (density as function of time) is used to predict sintering deformation. This paper provides an overview of the reduced method and a series of case studies.


1988 ◽  
Vol 61 (5) ◽  
pp. 879-891 ◽  
Author(s):  
Robert H. Finney ◽  
Alok Kumar

Abstract The determination of the material coefficients for Ogden, Mooney-Rivlin, Peng, and Peng-Landel material models using simple ASTM D 412 tensile data is shown to be a manageable task. The application of the various material models are shown to be subject to the type and level of deformation expected, with Ogden showing the best correlation with experimental data over a large strain range for the three types of strain investigated. At low strains, all of the models showed reasonable correlation.


Sign in / Sign up

Export Citation Format

Share Document