scholarly journals Preparation and Application of Organic-Inorganic Nanocomposite Materials in Stretched Organic Thin Film Transistors

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1058
Author(s):  
Yang-Yen Yu ◽  
Cheng-Huai Yang

High-transparency soluble polyimide with COOH and fluorine functional groups and TiO2-SiO2 composite inorganic nanoparticles with high dielectric constants were synthesized in this study. The polyimide and inorganic composite nanoparticles were further applied in the preparation of organic-inorganic hybrid high dielectric materials as the gate dielectric for a stretchable transistor. The optimal ratio of organic and inorganic components in the hybrid films was investigated. In addition, Jeffamine D2000 and polyurethane were added to the gate dielectric to improve the tensile properties of the organic thin film transistor (OTFT) device. PffBT4T-2OD was used as the semiconductor layer material and indium gallium liquid alloy as the upper electrode. Electrical property analysis demonstrated that the mobility could reach 0.242 cm2·V−1·s−1 at an inorganic content of 30 wt.%, and the switching current ratio was 9.04 × 103. After Jeffamine D2000 and polyurethane additives were added, the mobility and switching current could be increased to 0.817 cm2·V−1·s−1 and 4.27 × 105 for Jeffamine D2000 and 0.562 cm2·V−1·s−1 and 2.04 × 105 for polyurethane, respectively. Additives also improved the respective mechanical properties. The stretching test indicated that the addition of polyurethane allowed the OTFT device to be stretched to 50%, and the electrical properties could be maintained after stretching 150 cycles.

2012 ◽  
Vol 1467 ◽  
Author(s):  
James G. Grote ◽  
Fahima Ouchen ◽  
Donna M. Joyce ◽  
Kristi M. Singh ◽  
Narayanan Venkat ◽  
...  

ABSTRACTThe potential of bio-dielectrics for thin film transistor applications was explored via the incorporation of titanium dioxide (TiO2) nanoparticles, rutile form, a high dielectric constant (ε) ceramic, in the deoxyribonucleic acid (DNA) bio-polymer. The DNA-ceramic hybrid films were fabricated from stable suspensions of the TiO2 nanoparticles in viscous, aqueous DNA solutions. Dielectric characterization revealed that the incorporation of TiO2 in DNA resulted in enhanced dielectric constant (14.3 at 1 kHz for 40 wt % TiO2) relative to that of DNA in the entire frequency range of 1 kHz-1 MHz. Variable temperature dielectric measurements, in the 20-80°C range, of the DNA-TiO2 films revealed that the ceramic additive stabilizes DNA against large temperature dependent variations in both ε and the dielectric loss factor tan δ. The bulk resistivity of the DNA-TiO2 hybrid films was measured to be two to three orders of magnitude higher than that of the control DNA films, indicating their potential for utilization as insulating dielectrics in transistor and capacitor applications.


2008 ◽  
Vol 8 (5) ◽  
pp. 2676-2679 ◽  
Author(s):  
B. J. Park ◽  
J. H. Sung ◽  
J. H. Park ◽  
J. S. Choi ◽  
H. J. Choi

Nanocomposite materials of poly(vinyl acetate) (PVAc) and organoclay were fabricated, in order to be utilized as dielectric materials of the organic thin film transistor (OTFT). Spin coating condition of the nanocomposite solution was examined considering shear viscosity of the composite materials dissolved in chloroform. Intercalated structure of the PVAc/clay nanocomposites was characterized using both wide-angle X-ray diffraction and TEM. Fracture morphology of the composite film on silicon wafer was also observed by SEM. Dielectric constant (4.15) of the nanocomposite materials shows that the PVAc/clay nanocomposites are applicable for the gate dielectric materials.


2008 ◽  
Vol 8 (9) ◽  
pp. 4561-4564 ◽  
Author(s):  
Do-Hoon Hwang ◽  
Yong Suk Yang ◽  
Jeong-Ik Lee ◽  
Seong Hyun Kim ◽  
Oun-Ho Park ◽  
...  

A polyhedral oligomeric silsesquioxane derivative (POSS-OXT) containing photo-curable 4-membered cyclic oxetane functional groups was used as a gate dielectric of organic field effect transistor. The POSS-OXT was cross-linked and completely solidified by UV irradiation in the presence of a selected photo acid generator, and pinhole free uniform thin film was obtained. We fabricated a metal/insulator/metal device of Au/POSS-OXT (300 nm)/Au with area of 0.7 mm2 and the measured leakage current and capacitance of the device to evaluate the insulating properties of the POSS-OXT thin film. The maximum current was about 0.25 nA when 40 V was applied to the device. The observed values of the capacitance per unit area and dissipation factor were 11.4 nF/cm2 and 0.025, respectively. We fabricated an organic thin film transistor with pentacene as the active semiconductor and the photo-cross-linked POSS-OXT as an insulator. A field effect carrier mobility of 0.03 cm2/V·s was obtained with the device.


2006 ◽  
Vol 965 ◽  
Author(s):  
Hua-Chi Cheng ◽  
Yu-Rung Peng ◽  
Chao-An Chung ◽  
Wei-Hsin Hou ◽  
Zing-Way Pei

ABSTRACTWe have demonstrated organic thin-film transistor devices on synthesis paper of polypropylene (PP). All the fabrications are in solution-based processes except electrodes. As a barrier and smoother layer, photosensitive epoxy, 5μm-thich was coated on the paper substrate by using slit die coating. Polyvinyl phenol (PVP) was mixed with poly (melamine-co-formaldehyde) methylated, filmed by spin coating and ultraviolet (UV) cross linked to provide the gate dielectric layer. Using poly (3-hexylthiophene) as an active layer, a high-performance organic transistor with field effect mobility up to 0.006 cm2/ V s and an on/off ratio of 50 can be achieved. For the applications in flexible and disposable electronics, to built organic transistors on a cheap synthesis paper substrate can extremely lower the cost.


RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49353-49360 ◽  
Author(s):  
Jenner H. L. Ngai ◽  
Johnny K. W. Ho ◽  
Rocky K. H. Chan ◽  
S. H. Cheung ◽  
Louis M. Leung ◽  
...  

Micron-size organolead perovskite crystals grown on insulating polymeric surfaces as gate dielectric materials for high performance thin film transistors.


Sign in / Sign up

Export Citation Format

Share Document