scholarly journals Effects of Graphene Nanosheets with Different Lateral Sizes as Conductive Additives on the Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Li Ion Batteries

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1162
Author(s):  
Ting-Hao Hsu ◽  
Wei-Ren Liu

In this study, we focus on lateral size effects of graphene nanosheets as conductive additives for LiNi0.5Co0.2Mn0.3O2 (NCM) cathode materials for Li-ion batteries. We used two different lateral sizes of graphene, 13 (GN-13) and 28 µm (GN-28). It can be found that the larger sheet sizes of graphene nanosheets give a poorer rate capability. The electrochemical measurements indicate that GN-13 delivers an average capacity of 189.8 mAh/g at 0.1 C and 114.2 mAh/g at 2 C and GN-28 exhibits an average capacity of 179.4 mAh/g at 0.1 C and only 6 mAh/g at 2 C. Moreover, according to the results of alternating current (AC) impedance, it can be found that the GN-28 sample has much higher resistance than that of GN-13. The reason might be attributed to that GN-28 has a longer diffusion distance of ion transfer and the mismatch of particle size between NCM and GN-28. The corresponding characterization might provide important reference for Li-ion battery applications.

Author(s):  
Haichang Zhang ◽  
Rui Zhang ◽  
Xingjiang Liu ◽  
Fei Ding ◽  
Chunsheng Shi ◽  
...  

High cost, complex synthesis routes and low yield are pressing challenges hindering the practical application of organic battery materials. Herein, copper(II) phthalocyanine (CuPc), one of the most frequently used blue...


2020 ◽  
Vol 2 (12) ◽  
pp. 5578-5583
Author(s):  
Xian Chen ◽  
Liang Wang ◽  
Feng Ma ◽  
Tanyuan Wang ◽  
Jiantao Han ◽  
...  

A nanocomposite of core@shell Sb@Sb2O3 particles anchored on 3D porous nitrogen-doped carbon nanosheets is synthesized and employed as a anode for Li-ion battery, demonstrating excellent rate capability and cycle performance.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Binitha Gangaja ◽  
Shantikumar Nair ◽  
Dhamodaran Santhanagopalan

AbstractMaterials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries. In this study, a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is proposed by using an off-stoichiometric precursor ratio. A Li-deficient off-stoichiometry leads to the coexistence of phase-separated crystalline nanoparticles of Li4Ti5O12 and TiO2 exhibiting reasonable high-rate performances. However, after the solvothermal process, an extended aging of the hydrolyzed solution leads to the formation of a Li4Ti5O12 nanoplate-like structure with a self-assembled disordered surface layer without crystalline TiO2. The Li4Ti5O12 nanoplates with the disordered surface layer deliver ultrahigh-rate performances for both charging and discharging in the range of 50–300C and reversible capacities of 156 and 113 mAh g−1 at these two rates, respectively. Furthermore, the electrode exhibits an ultrahigh-charging-rate capability up to 1200C (60 mAh g−1; discharge limited to 100C). Unlike previously reported high-rate half cells, we demonstrate a high-power Li-ion battery by coupling Li4Ti5O12 with a high-rate LiMn2O4 cathode. The full cell exhibits ultrafast charging/discharging for 140 and 12 s while retaining 97 and 66% of the anode theoretical capacity, respectively. Room- (25 °C), low- (− 10 °C), and high- (55 °C) temperature cycling data show the wide temperature operation range of the cell at a high rate of 100C.


2014 ◽  
Vol 07 (04) ◽  
pp. 1430002 ◽  
Author(s):  
Liu Li ◽  
Kim Seng Lee ◽  
Li Lu

Li -rich layer-structured x Li 2 MnO 3 ⋅ (1 - x) LiMO 2 ( M = Mn , Ni , Co , etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li -ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li -rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li -ion batteries.


2016 ◽  
Vol 4 (12) ◽  
pp. 4448-4456 ◽  
Author(s):  
David McNulty ◽  
Hugh Geaney ◽  
Eileen Armstrong ◽  
Colm O'Dwyer

Inverse opal porous materials have provided several breakthroughs that have facilitated high rate capability, better capacity retention and material stability in Li-ion batteries.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jun Cao ◽  
Haijian Huang ◽  
Yifan Qu ◽  
Weijian Tang ◽  
Zeheng Yang ◽  
...  

Lithium-rich cathode materials are considered to be promising candidate cathode materials for the next-generation Li-ion batteries owing to their high specific capacities and low cost. Nevertheless, they still suffer from...


Sign in / Sign up

Export Citation Format

Share Document